Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(34): eabn8614, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001671

RESUMEN

Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.


Asunto(s)
Células Madre Mesenquimatosas , Esferoides Celulares , Animales , Humanos , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Trasplante Heterólogo
2.
Diabetes Metab J ; 44(6): 908-918, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32431100

RESUMEN

BACKGROUND: Voglibose, an α-glucosidase inhibitor, inhibits breakdown of complex carbohydrates into simple sugar units in intestine. Studies showed that voglibose metabolism in the liver might be negligible due to its poor intestinal absorption. Numerous microorganisms live in intestine and have several roles in metabolism and detoxification of various xenobiotics. Due to the limited information, the possible metabolism of voglibose by intestinal microbiota was investigated in vitro and in vivo. METHODS: For the in vitro study, different concentrations of voglibose were incubated with intestinal contents, prepared from both vehicle- and antibiotics-treated mice, to determine the decreased amount of voglibose over time by using liquid chromatography-mass spectrometry. Similarly, in vivo pharmacodynamic effect of voglibose was determined following the administration of voglibose and starch in vehicle- and antibiotic-pretreated non-diabetic and diabetic mice, by measuring the modulatory effects of voglibose on blood glucose levels. RESULTS: The in vitro results indicated that the remaining voglibose could be significantly decreased when incubated with the intestinal contents from normal mice compared to those from antibiotic-treated mice, which had less enzyme activities. The in vivo results showed that the antibiotic pretreatment resulted in reduced metabolism of voglibose. This significantly lowered blood glucose levels in antibiotic-pretreated mice compared to the control animals. CONCLUSION: The present results indicate that voglibose would be metabolized by the intestinal microbiota, and that this metabolism might be pharmacodynamically critical in lowering blood glucose levels in mice.


Asunto(s)
Microbioma Gastrointestinal , Animales , Diabetes Mellitus Experimental , Inhibidores de Glicósido Hidrolasas , Inositol/análogos & derivados , Ratones
3.
Biomol Ther (Seoul) ; 28(4): 302-310, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126735

RESUMEN

Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.

4.
J Control Release ; 316: 138-149, 2019 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-31689461

RESUMEN

Enteric-coated formulations using Eudragit® polymers have been extensively used for delivering drugs to the lower gastrointestinal tract. However, these drug-delivery systems cannot accurately deliver the therapeutic cargoes to colon because of early degradation of the polymers at alkaline pH of the small intestine. Here, we describe a precise method of delivering drugs to inflammation sites in colon using an oral drug delivery system. Tacrolimus (FK506)-loaded microspheres were prepared using a thioketal-based polymer that releases drug in response to reactive oxygen species (ROS), which are abundantly produced at the sites of inflammation in acute colitis. Orally-administered FK506-loaded thioketal microspheres (FK506-TKM) led to a substantial accumulation of FK506 in inflamed colon and effectively alleviated dextran-sulfate sodium (DSS)-induced murine colitis. At the molecular level, FK506-TKM significantly inhibited infiltration of CD4+ and CD8+ T lymphocytes in colon and differentiation of CD4+ T cells into Th1 and Th17 cells in colon-draining mesenteric lymph nodes via restricting dendritic cell migration from colon. Our findings indicate orally-administered thioketal-based drug delivery system as a promising means of treating acute inflammatory bowel diseases.


Asunto(s)
Colitis/tratamiento farmacológico , Inmunosupresores/administración & dosificación , Inflamación/tratamiento farmacológico , Tacrolimus/administración & dosificación , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Colitis/patología , Células Dendríticas/citología , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Inmunosupresores/farmacología , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Microesferas , Ácidos Polimetacrílicos/química , Especies Reactivas de Oxígeno/metabolismo , Tacrolimus/farmacología , Células TH1/citología , Células Th17/citología
5.
J Toxicol Environ Health A ; 82(15): 879-889, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507242

RESUMEN

It has been a challenge to develop in vitro alternative test methods for accurate prediction of metallic products which may exert skin sensitization, as several test methods adopted by OECD were relatively ineffective in assessing the capacity for metallic compounds to exert sensitizing reactions, compared with organic test substances. Based upon these findings, a system that incorporates ß-galactosidase producing E. coli cultures was tested for its predictive capacity to well-known metallic sensitizers. In this system, E. coli cells were incubated with metal salts at various concentrations and ß-galactosidase suppression by each test metal was determined. Fourteen local lymph node assay (LLNA) categorized metal salts were examined. Although color interference from metal salts was minimal, a fluorometric detection system was also employed using 4-methylumbelliferyl galactopyranoside as a substrate for ß-galactosidase to avoid the color interference, concomitantly with the original UV-spectrometric method. Data demonstrated that two detection methods were comparable and complementary. In addition, most of the metallic sensitizers were correctly identified at 0.6 and 0.8 mM concentrations. Despite the lower specificity obtained in the current study and small number of substances tested, the developed method appears to be a relatively simple and effective in vitro method for detecting metallic sensitizers. When 61 chemicals tested in the ß-galactosidase producing E. coli cultures including the present study were collectively analyzed, the prediction capacity was as high as other OECD-adopted tests: 95.6% of sensitivity, 66.7% of specificity, and 88.5% of accuracy. It is important to emphasize that animals or mammalian cell cultures were not required in the current method, which are in accordance with the EU guidelines on restricted or banned animal testing.


Asunto(s)
Dermatitis Alérgica por Contacto , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Metales/toxicidad , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/metabolismo , Alternativas a las Pruebas en Animales/métodos , Escherichia coli/enzimología , Fluorometría , Isopropil Tiogalactósido , Sensibilidad y Especificidad , Piel/efectos de los fármacos , beta-Galactosidasa/genética
6.
Biomaterials ; 221: 119415, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419652

RESUMEN

Host immune response remains an obstacle in cell-replacement therapy for treating type I diabetes. Long-term systemic immunosuppression results in suboptimal efficacy and adverse reactions. Thus, "cell-particle hybrids" of pancreatic islets and tissue-adhesive, polydopamine-coated, FK506-loaded biodegradable microspheres (PD-FK506-MS) were developed to locally modulate the immune response at the transplantation site. Coating of FK506-MS with PD enabled the rapid formation of stable cell-particle hybrids without significant changes in islet viability and functionality. Extremely low quantities of FK506 (approximately 600 ng per recipient) sustainably released from cell-particle hybrids effectively prolonged survival of xenogeneic islet graft. Interestingly, FK506 exhibited extended bioavailability in the grafts but was undetectable in systemic circulation and other tissues. Moreover, mRNA expression of inflammatory cytokines was significantly inhibited in the PD-FK506-MS-containing grafts but not in lymphoid organs. This study presents a promising platform that facilitates the translation of local immunomodulation towards an effective strategy with improved safety profiles for treating type I diabetes.


Asunto(s)
Terapia de Inmunosupresión/métodos , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/metabolismo , Microesferas , Trasplante Heterólogo/métodos , Animales , Citometría de Flujo , Prueba de Tolerancia a la Glucosa , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Polímeros/química , Tacrolimus
7.
J Med Chem ; 62(17): 8194-8234, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31398033

RESUMEN

With the aim of developing new effective topoisomerase IIα-targeted anticancer agents, we synthesized a series of hydroxy- and halogenated 2,4-diphenyl indeno[1,2-b]pyridinols using a microwave-assisted single step synthetic method and investigated structure-activity relationships. The majority of compounds with chlorophenyl group at 2-position and phenol group at the 4-position of indeno[1,2-b]pyridinols exhibited potent antiproliferative activity and topoisomerase IIα-selective inhibition. Of the 172 compounds tested, 89 showed highly potent and selective topoisomerase IIα inhibition and antiproliferative activity in the nanomolar range against human T47D breast (2.6 nM) cancer cell lines. In addition, mechanistic studies revealed compound 89 is a nonintercalative topoisomerase II poison, and in vitro studies showed it had promising cytotoxic effects in diverse breast cancer cell lines and was particularly effective at inducing apoptosis in T47D cells. Furthermore, in vivo administration of compound 89 had significant antitumor effects in orthotopic mouse model of breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Neoplasias de la Mama/tratamiento farmacológico , ADN-Topoisomerasas de Tipo II/metabolismo , Descubrimiento de Drogas , Piridinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos ICR , Microondas , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Células Tumorales Cultivadas
8.
Cell Rep ; 27(10): 2948-2961.e7, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167140

RESUMEN

The function of regulatory T (Treg) cells depends on lipid oxidation. However, the molecular mechanism by which Treg cells maintain lipid metabolism after activation remains elusive. Liver kinase B1 (LKB1) acts as a coordinator by linking cellular metabolism to substrate AMP-activated protein kinase (AMPK). We show that deletion of LKB1 in Treg cells exhibited reduced suppressive activity and developed fatal autoimmune inflammation. Mechanistically, LKB1 induced activation of the mevalonate pathway by upregulating mevalonate genes, which was essential for Treg cell functional competency and stability by inducing Treg cell proliferation and suppressing interferon-gamma and interleukin-17A expression independently of AMPK. Furthermore, LKB1 was found to regulate intracellular cholesterol homeostasis and to promote the mevalonate pathway. In agreement, mevalonate and its metabolite geranylgeranyl pyrophosphate inhibited conversion of Treg cells and enhanced survival of LKB1-deficient Treg mice. Thus, LKB1 is a key regulator of lipid metabolism in Treg cells, involved in optimal programming of suppressive activity, immune homeostasis, and tolerance.


Asunto(s)
Ácido Mevalónico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T Reguladores/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/terapia , Proliferación Celular , Colesterol/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hidroximetilglutaril-CoA Reductasas/deficiencia , Hidroximetilglutaril-CoA Reductasas/genética , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatos de Poliisoprenilo/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción STAT5/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/trasplante
9.
J Toxicol Environ Health A ; 82(8): 502-513, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31140386

RESUMEN

Occupational exposure of workers to 1-bromopropane (1-BP) has raised concerns in industry for many years. Despite the known toxicity of this chemical, molecular events attributed to exposure to 1-BP have not been extensively studied. The aim of the present study was to examine the effects of 1-BP exposure on adduct formation with DNA and glutathione (GSH) in male Sprague-Dawley rats in an attempt to determine the early stages of toxicity. Following 6 h after either single or daily exposure to 1-BP for 3 days, N7-propyl guanine and S-propyl GSH were quantified in several organs by using liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that N7-propyl guanine was maximally formed in liver followed by spleen, testes, and lung in both dose- and time-dependent manners. However, DNA adduct was not detected in cardiac tissue. In the case of S-propyl GSH, this compound was formed in the following order in various organs: liver > testes > spleen > kidney > lung > heart. In a subsequent in vitro study, formation of N7-propyl guanine initiated by 1-BP in calf thymus DNA was not markedly affected by addition of liver homogenates, which indicated that this chemical may be acting as a direct alkylating agent. In contrast, an in vitro study with free GSH demonstrated that 1-BP reduced GSH and elevated production of S-propyl GSH, and that the production of this adduct was significantly higher in the presence of active liver homogenates. Data indicated that formation of GSH adducts initiated by 1-BP might be associated with an enzyme-driven process. Although further characterization is necessary, it would appear that N7-propyl guanine and S-propyl GSH might serve as useful markers in cases of exposure assessment of 1-BP.


Asunto(s)
Aductos de ADN/efectos de los fármacos , Contaminantes Ambientales/efectos adversos , Glutatión/efectos de los fármacos , Solventes/efectos adversos , Animales , Aductos de ADN/metabolismo , Glutatión/metabolismo , Hidrocarburos Bromados/efectos adversos , Hígado/efectos de los fármacos , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
10.
Metabolites ; 9(4)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965644

RESUMEN

Alteration in the number and composition of intestinal microbiota affects the metabolism of several xenobiotics. Gastrodin, isolated from Gastrodia elata, is prone to be hydrolyzed by intestinal microbiota. In the present study, the role of intestinal microbiota in gastrodin metabolism was investigated in vitro and in vivo. Gastrodin was incubated in an anaerobic condition with intestinal contents prepared from vehicle- and antibiotics-treated rats and the disappearance of gastrodin and formation of 4-hydroxybenzyl alcohol (4-HBA) was measured by liquid chromatography coupled to mass spectroscopy (LC-MS/MS). The results showed that almost all gastrodin incubated with control intestinal contents was metabolized to its aglycone in time- and concentration-dependent manners. In contrast, much less formation of 4-HBA was detected in intestinal contents from antibiotics-treated rats. Subsequently, in vivo pharmacokinetic study revealed that the antibiotic pretreatment of rats significantly affected the metabolism of gastrodin to 4-HBA. When administered orally, gastrodin was rapidly absorbed rapidly into plasma, metabolized to 4-HBA, and disappeared from the body within six hours. Interestingly, the pharmacokinetic parameters of 4-HBA were changed remarkably in antibiotics-treated rats, compared to control rats. The results clearly indicated that the antibiotics treatment of rats suppressed the ability of intestinal microbiota to metabolize gastrodin to 4-HBA and that, thereby, the pharmacodynamic action was significantly modulated.

11.
Toxicol Lett ; 305: 81-93, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711672

RESUMEN

Although several in vitro approaches were successful in separating chemicals as skin sensitizers and non-sensitizers, none of the available methods completely mimics the absolute in vivo scenario of skin sensitization. One of the major challenges with currently available systems would be the limited or no metabolic capacity to activate pre- or pro-haptens to reactive metabolites in the system. In the present study, E. coli cells with ß-galactosidase-expressing LacZ gene were combined with either induced rat liver S-9 fractions or microsomal fractions to detect pre- or pro-haptens to cause skin sensitization. Following optimization of some experimental conditions, we examined 20 sensitizers classified as pre- or pro-haptens and 11 non-sensitizers in these E. coli cultures by incubating bacterial cells and test chemicals with and without S-9 or microsomal proteins. After a 6-h incubation in the presence of IPTG, cells were lyzed to determine the suppression of ß-galactosidase enzyme. A cut-off of 17.3% was applied to determine the percent suppression of ß-galactosidase activity by test chemicals to classify skin sensitizers and non-sensitizers. Among chemicals tested, 19 pre- or pro-haptens were categorized as true positives and 8 non-sensitizers were categorized as true negatives. Thereby, the overall sensitivity, specificity and accuracy achieved with microsome-incorporated and S-9 fraction-incorporated group were 95.0%, 72.7% and 87.1% and 80.0%, 81.8% and 80.6%, respectively. The results suggested that the present bacterial system incorporated with the microsomal activation system could be considered as a useful alternative method to classify not only direct-acting sensitizers but also pre- or pro-haptens requiring metabolic activation in vitro.


Asunto(s)
Alérgenos/toxicidad , Dermatitis Alérgica por Contacto , Haptenos/toxicidad , Microsomas Hepáticos/efectos de los fármacos , beta-Galactosidasa/metabolismo , Alérgenos/metabolismo , Alternativas a las Pruebas en Animales , Animales , Escherichia coli , Haptenos/metabolismo , Humanos , Hipersensibilidad , Ratas , Pruebas de Toxicidad
12.
Toxicol Lett ; 289: 75-85, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29545173

RESUMEN

Among many of the validated methods for testing skin sensitization, direct peptide reactivity assay (DPRA) employs no cells or animals. Although no immune cells are involved in this assay, it reliably predicts the skin sensitization potential of a chemical in chemico. Herein, a new method was developed using endogenous small-molecular-weight compounds, cysteamine and glutathione, rather than synthetic peptides, to differentiate skin sensitizers from non-sensitizers with an accuracy as high as DPRA. The percent depletion of cysteamine and glutathione by test chemicals was measured by an HPLC equipped with a PDA detector. To detect small-size molecules, such as cysteamine and glutathione, a derivatization by 4-(4-dimethylaminophenylazo) benzenesulfonyl chloride (DABS-Cl) was employed prior to the HPLC analysis. Following test method optimization, a cut-off criterion of 7.14% depletion was applied to differentiate skin sensitizers from non-sensitizers in combination of the ratio of 1:25 for cysteamine:test chemical with 1:50 for glutathione:test chemical for the best predictivity among various single or combination conditions. Although overlapping HPLC peaks could not be fully resolved for some test chemicals, high levels of sensitivity (100.0%), specificity (81.8%), and accuracy (93.3%) were obtained for 30 chemicals tested, which were comparable or better than those achieved with DPRA.


Asunto(s)
Cisteamina/antagonistas & inhibidores , Erupciones por Medicamentos/prevención & control , Drogas en Investigación/efectos adversos , Glutatión/antagonistas & inhibidores , Modelos Moleculares , Piel/efectos de los fármacos , Métodos Analíticos de la Preparación de la Muestra , Cromatografía Líquida de Alta Presión , Cisteamina/química , Evaluación Preclínica de Medicamentos/métodos , Drogas en Investigación/química , Glutatión/química , Humanos , Indicadores y Reactivos/química , Cinética , Fotometría , Curva ROC , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Espectrofotometría Ultravioleta , p-Dimetilaminoazobenceno/análogos & derivados , p-Dimetilaminoazobenceno/química
13.
J Toxicol Environ Health A ; 81(9): 288-301, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29473800

RESUMEN

Although the Organization for Economic Cooperation and Development (OECD) has adopted several in vitro methods with reasonable predictive capacity, alternative methods for identifying skin sensitizers and non-sensitizers with reliability and simplicity are still required for more efficient and economic prediction. The present study was to design an in vitro system with the use of a ß-galactosidase-expressing E. coli culture for simpler but sufficiently accurate classification of skin sensitizers and non-sensitizers. A LacZ gene-containing E. coli strain that is capable of producing ß-galactosidase enzyme was induced by isopropyl ß-D-1-thiogalactopyranoside with concomitant treatment with test chemicals. After 6-hr incubation, cells were lysed and ß-galactosidase enzyme activity was monitored colorimetrically by using O-nitrophenyl-D-galactopyranoside as a substrate. Following optimization of several experimental conditions, 22 skin sensitizers and 11 non-sensitizers were examined to assess predictive capacity of this method. The results indicated that predictivity was as follows: 90.9% sensitivity, 81.8% specificity, and 87.9% accuracy, when 17.3% of control activity was used as the cut-off value to separate sensitizers from non-sensitizers. Data suggested that the current bacterial system expressing ß-galactosidase may serve as a useful alternative test for classifying skin sensitizers and non-sensitizers, without the utilization of animals or mammalian cell cultures.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Cosméticos/efectos adversos , Escherichia coli/efectos de los fármacos , beta-Galactosidasa/metabolismo , Cosméticos/clasificación , Microorganismos Modificados Genéticamente/efectos de los fármacos
14.
Arch Pharm Res ; 40(12): 1345-1355, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29181640

RESUMEN

The intestinal mucosa and liver have long been considered as the main sites of drug metabolism, and the contribution of gut microbiota to drug metabolism has been under-estimated. However, it is now generally accepted that the gut microbiota plays an important role in drug metabolism prior to drug absorption or during enterohepatic circulation via various microbial enzymatic reactions in the intestine. Moreover, some drugs are metabolized by gut microbiota to specific metabolite(s) that cannot be formed in the liver. More importantly, the metabolism of drugs by gut microbiota prior to absorption can alter the systemic bioavailability of certain drugs. Therefore, understanding drug metabolism by gut microbiota is critical for explaining changes in the pharmacokinetics of drugs, which may cause significant alterations in drug-induced pharmacodynamics and toxicities. In this review, we describe recent progress with regard to the role of metabolism by gut microbiota in some drug-induced alterations of either pharmacological or toxicological effects to emphasize the clinical importance of gut microbiota for safe and effective use of drugs.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Preparaciones Farmacéuticas/metabolismo , Humanos , Hígado/metabolismo
15.
Biomol Ther (Seoul) ; 24(4): 446-52, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27098862

RESUMEN

Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.

16.
Molecules ; 21(3): 337, 2016 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-26978333

RESUMEN

Since many glycoside compounds in natural products are hydrolyzed by intestinal microbiota when administered orally, it is of interest to know whether their pharmacological effects are derived from the glycoside itself or from the aglycone form in vivo. An interesting example is baicalin versus baicalein, the aglycone of baicalin, which is contained in some herbs from Labiatae including Scutellaria baicalensis Georgi and Scutellaria lateriflora Linne. The herbs have been extensively used for treatment of inflammatory diseases in Asia. Although there have been numerous reports regarding the pharmacological effects of baicalin and baicalein in vivo and in vitro, some reports indicated that the glycoside form would hardly be absorbed in the intestine and that it should be hydrolyzed to baicalein in advance for absorption. Therefore, the role of metabolism by intestinal microbiota should also be considered in the metabolism of baicalin. In addition, baicalin contains a glucuronide moiety in its structure, by which baicalin and baicalein show complex pharmacokinetic behaviors, due to the interconversion between them by phase II enzymes in the body. Recently, concerns about drug interaction with baicalin and/or baicalein have been raised, because of the co-administration of Scutellaria species with certain drugs. Herein, we reviewed the role of intestinal microbiota in pharmacokinetic characteristics of baicalin and baicalein, with regards to their pharmacological and toxicological effects.


Asunto(s)
Interacciones Farmacológicas , Flavonoides/farmacología , Microbioma Gastrointestinal , Animales , Biomarcadores , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/farmacología , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Estructura Molecular , Ratas
17.
Biomol Ther (Seoul) ; 23(2): 201-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25767690

RESUMEN

Scutellaria baicalensis is one of the most widely used herbal medicines in East Asia. Because baicalein and baicalin are major components of this herb, it is important to understand the effects of these compounds on drug metabolizing enzymes, such as cytochrome P450 (CYP), for evaluating herb-drug interaction. The effects of baicalin and baicalein on activities of ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), benzyloxyresorufin O-debenzylase (BROD), p-nitrophenol hydroxylase and erythromycin N-demethylase were assessed in rat liver microsomes in the present study. In addition, the pharmacokinetics of caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) in baicalin-treated rats were compared with untreated control. As results, EROD, MROD and BROD activities were inhibited by both baicalin and baicalein. However, there were no significant differences in the pharmacokinetic parameters of oral caffeine and its three metabolites between control and baicalin-treated rats. When the plasma concentration of baicalin was determined, the maximum concentration of baicalin was below the estimated IC50 values observed in vitro. In conclusion, baicalin had no effects on the pharmacokinetics of caffeine and its metabolites in vivo, following single oral administration in rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...