Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Curr Res Food Sci ; 9: 100791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979544

RESUMEN

The utmost objective of every nation is to achieve zero hunger and ensure the health and well-being of its population. However, in impoverished nations, particularly in rural areas, such issues persist on a daily basis. Currently, there is a growing demand for fruit consumption due to their potential health benefits. Surprisingly, their most prevalent by-product is pomace, which is produced in millions of tonnes and is usually discarded as waste after processing or consumption. Even food produced with these kinds of raw resources can contribute to the objective of eradicating world hunger. Owing to these advantages, scientists have begun evaluating the nutritional content of various fruit pomace varieties as well as the chemical composition in different bioactive constituents, which have significant health benefits and can be used to formulate a variety of food products with notable nutraceutical and functional potential. So, the purpose of this review is to understand the existing familiarity of nutritional and phytochemical composition of selected fruit pomaces, those derived from pineapple, orange, grape, apple, and tomato. Furthermore, this article covers pre-clinical and clinical investigations conducted on the selected fruit pomace extracts and/or powder forms and its incorporation into food products and animal feed. Adding fruit pomaces reduces the glycemic index, increases the fibre content and total polyphenolic contents, and reduces the cooking loss, etc. In animal feeds, incorporating fruit pomaces improves the antioxidant enzyme activities, humoral immune system, and growth performance and reduces methane emission.

2.
Chem Biol Interact ; 399: 111138, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38992768

RESUMEN

Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.


Asunto(s)
Biomarcadores , Glutatión , Estrés Oxidativo , Oximas , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Oximas/farmacología , Biomarcadores/sangre , Ratas , Masculino , Glutatión/sangre , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/sangre , Peroxidación de Lípido/efectos de los fármacos , Catalasa/metabolismo , Catalasa/sangre , Malondialdehído/sangre , Malondialdehído/metabolismo , Reactivadores de la Colinesterasa/farmacología , Productos Avanzados de Oxidación de Proteínas/sangre , Antioxidantes/metabolismo , Antioxidantes/farmacología
3.
Int J Pharm ; 661: 124384, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917957

RESUMEN

Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.


Asunto(s)
Antineoplásicos , Proliferación Celular , Hidrogeles , Piperidinas , Quinazolinonas , Plata , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Hidrogeles/administración & dosificación , Hidrogeles/química , Animales , Femenino , Plata/química , Plata/administración & dosificación , Humanos , Línea Celular Tumoral , Piperidinas/farmacología , Piperidinas/administración & dosificación , Piperidinas/química , Proliferación Celular/efectos de los fármacos , Quinazolinonas/química , Quinazolinonas/administración & dosificación , Quinazolinonas/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Ratones , Movimiento Celular/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Neovascularización Patológica/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
4.
Toxicology ; 506: 153868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906241

RESUMEN

Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 µM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated ß-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.


Asunto(s)
Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Subunidad alfa del Factor 1 Inducible por Hipoxia , Macrófagos , Transducción de Señal , Tricotecenos , Proteína p53 Supresora de Tumor , Animales , Senescencia Celular/efectos de los fármacos , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína p53 Supresora de Tumor/metabolismo , Tricotecenos/toxicidad , Células RAW 264.7 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Arch Toxicol ; 98(8): 2393-2408, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38744709

RESUMEN

Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated ß-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of ß-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate ß-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1ß secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.


Asunto(s)
Senescencia Celular , Enfermedades Neurodegenerativas , Humanos , Senescencia Celular/efectos de los fármacos , Animales , Fenotipo Secretor Asociado a la Senescencia , Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Enfermedad de Parkinson/metabolismo , Acortamiento del Telómero/efectos de los fármacos , Transducción de Señal
6.
Mol Cancer ; 23(1): 107, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760815

RESUMEN

Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.


Asunto(s)
Inmunoterapia , Neoplasias , Neutrófilos , Microambiente Tumoral , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Animales , Transducción de Señal
7.
Food Chem Toxicol ; 189: 114742, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754807

RESUMEN

The liver is a vital organ in human physiology positioned in the upper right quadrant of the peritoneal cavity, which plats a critical role in metabolic processes, detoxification of various substances and overall homeostasis. Along with these critical functions, hepatic diseases impose as significant global health threat. Liver illness is the cause of two million fatalities every year, or 4% of all deaths. Traditionally, healthcare providers have prescribed antibacterial and antiviral medications to address liver illness. Nephrotoxicity is a frequently observed negative reaction to drugs, with the majority of such events happening in individuals who have advanced cirrhosis. Thus, recognizing this gap, there is a dire need of exploration of pharmaceutical alterative for hepatic diseases, with special focus on their efficacy and reduced toxicity. Fruits have long been known to therapeutic impact on human health, thus exploration of fruits components namely pulp, seeds and peels containing phytochemicals have emerged as a promising avenue for hepatoprotective interventions. Thus, review comprehends the information about worldwide burden of chemical induced toxicity and injuries as well as highlight the on-going challenges in hepatic disease management. It also shed light on the valuable contributions fruit parts and their phytocompounds obtained from different components of fruits. Fruit pulp, especially when rich in flavonoids, has demonstrated significant potential in animal model studies. It has been observed to enhance the activity of antioxidant enzymes and reduce the expression of pro-inflammatory markers. The methanolic and ethanolic extracts have demonstrated the most favorable outcomes. Further, this review also discusses about the safety assessments of fruits extracts for their utilization as hepatoprotective agents.


Asunto(s)
Frutas , Semillas , Animales , Frutas/química , Humanos , Semillas/química , Sustancias Protectoras/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Extractos Vegetales/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo
8.
Sci Total Environ ; 937: 173377, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38796025

RESUMEN

Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Ecosistema
9.
Front Pharmacol ; 15: 1361641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818380

RESUMEN

Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.

10.
Heliyon ; 10(8): e28795, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644874

RESUMEN

Fentanyl is a synthetic µ-opioid receptor agonist approved to treat severe to moderate pain with faster onset of action and about 100 times more potent than morphine. Over last two decades, abuse of fentanyl and its derivatives has an increased trend, globally. Currently, the United States (US) faces the most serious situation related to fentanyl overdose, commonly referred to as the opioid epidemic. Nowadays, fentanyl is considered as the number one cause of death for adults aged 18-45 in the US. Synthesis and derivatization of fentanyl is inexpensive to manufacture and easily achievable. Indeed, more than 1400 fentanyl derivatives have been described in the scientific literature and patents. In addition, accessibility and efficacy of fentanyl and its derivatives can play a potential role in misuse of these compounds as a chemical weapon. In this review, the properties, general pharmacology, and overdose death cases associated with fentanyl and selected derivatives are presented. Moreover, current opioid epidemic in the US, Moscow theatre hostage crisis, and potential misuse of fentanyl and its derivatives as a chemical weapon are disclosed.

11.
Environ Toxicol Pharmacol ; 108: 104447, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636744

RESUMEN

This review systematically compiles sports-related drugs, substances, and methodologies based on the most frequently detected findings from prohibited lists published annually by the World Anti-Doping Agency (WADA) between 2003 and 2021. Aligned with structure of the 2023 prohibited list, it covers all proscribed items and details the pharmacokinetics and pharmacodynamics of five representatives from each section. Notably, it explores significant metabolites and metabolic pathways associated with these substances. Adverse analytical findings are summarized in tables for clarity, and the prevalence is visually represented through charts. The review includes a concise historical overview of doping and WADA's role, examining modifications in the prohibited list for an understanding of evolving anti-doping measures.


Asunto(s)
Doping en los Deportes , Humanos , Sustancias para Mejorar el Rendimiento/farmacocinética , Detección de Abuso de Sustancias/métodos
12.
Arch Toxicol ; 98(5): 1323-1367, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483584

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., ß-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno , Superóxidos , Ácido Peroxinitroso/farmacología , Antocianinas/metabolismo , Antocianinas/farmacología , Estrés Oxidativo , Óxido Nítrico , Superóxido Dismutasa/metabolismo , Enfermedad Crónica
13.
Mycotoxin Res ; 40(2): 223-234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319535

RESUMEN

Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer's disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a "brake" on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this "brake" to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α's protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.


Asunto(s)
Precursor de Proteína beta-Amiloide , Subunidad alfa del Factor 1 Inducible por Hipoxia , Toxina T-2 , Proteínas tau , Toxina T-2/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas tau/metabolismo , Fosforilación/efectos de los fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Ratones , Animales , Línea Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Sci Total Environ ; 918: 170577, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38311074

RESUMEN

Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Ecosistema , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbón Orgánico , Plantas , Tecnología
15.
Mini Rev Med Chem ; 24(16): 1496-1520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265369

RESUMEN

Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.


Asunto(s)
Antineoplásicos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Sarcoma , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Sarcoma/patología , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Animales , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico
16.
Heliyon ; 9(11): e22204, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38058625

RESUMEN

Understanding the role of the mitogen-activated protein kinases (MAPKs) signalling pathway is essential in advancing treatments for neurodegenerative disorders like Alzheimer's. In this study, we investigate in-silico techniques involving computer-based methods to extract the MAPK1 sequence. Our applied methods enable us to analyze the protein's structure, evaluate its properties, establish its evolutionary relationships, and assess its prevalence in populations. We also predict epitopes, assess their ability to trigger immune responses, and check for allergenicity using advanced computational tools to understand their immunological properties comprehensively. We apply virtual screening, docking, and structure modelling to identify promising drug candidates, analyze their interactions, and enhance drug design processes. We identified a total of 30 cell-targeting molecules against the MAPK1 protein, where we selected top 10 CTL epitopes (PAGGGPNPG, GGGPNPGSG, SAPAGGGPN, AVSAPAGGG, AGGGPNPGS, ATAAVSAPA, TAAVSAPAG, ENIIGINDI, INDIIRTPT, and NDIIRTPTI) for further evaluation to determine their potential efficacy, safety, and suitability for vaccine design based on strong binding potential. The potential to cover a large portion of the world's population with these vaccines is substantial-88.5 % for one type and 99.99 % for another. In exploring the molecular docking analyses, we examined a library of compounds from the ZINC database. Among them, we identified twelve compounds with the lowest binding energy. Critical residues in the MAPK1 protein, such as VAL48, LYS63, CYS175, ASP176, LYS160, ALA61, LEU165, TYR45, SER162, ARG33, PRO365, PHE363, ILE40, ASN163, and GLU42, are pivotal for interactions with these compounds. Our result suggests that these compounds could influence the protein's behaviour. Moreover, our docking analyses revealed that the predicted peptides have a strong affinity for the MAPK1 protein. These peptides form stable complexes, indicating their potential as potent inhibitors. This study contributes to the identification of new drug compounds and the screening of their desired properties. These compounds could potentially help reduce the excessive activity of MAPK1, which is linked to Alzheimer's disease.

17.
Biomed Pharmacother ; 167: 115600, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783152

RESUMEN

Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Femenino , Masculino , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Senoterapéuticos , Inmunosupresores , Sirolimus , Serina-Treonina Quinasas TOR
18.
Chem Biol Interact ; 385: 110734, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788753

RESUMEN

Acetylcholinesterase (AChE, EC 3.1.1.7) reactivators (2-PAM, trimedoxime, obidoxime, asoxime) have become an integral part of antidotal treatment in cases of nerve agent and organophosphorus (OP) pesticide poisonings. They are often referred to as specific antidotes due to their ability to restore AChE function when it has been covalently inhibited by an OP compound. Currently available commercial reactivators exhibit limited ability to penetrate the blood-brain barrier, where reactivation of inhibited AChE is crucial. Consequently, there have been numerous efforts to discover more brain-penetrating AChE reactivators. In this study, we examined a derivative of 2-PAM designed to possess increased lipophilicity. This enhanced lipophilicity was achieved through the incorporation of a benzyl group into its molecular structure. Initially, a molecular modeling study was conducted, followed by a comparison of its reactivation efficacy with that of 2-PAM against 10 different AChE inhibitors in vitro. Unfortunately, this relatively significant structural modification of 2-PAM resulted in a decrease in its reactivation potency. Consequently, this derivative cannot be considered as a broad-spectrum AChE reactivator.


Asunto(s)
Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Humanos , Reactivadores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Compuestos de Pralidoxima/farmacología , Antídotos/farmacología , Oximas/farmacología , Oximas/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/metabolismo
19.
Chem Biol Interact ; 383: 110658, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37572873

RESUMEN

Oxidative stress status and morphological injuries in the brain of Wistar rats induced by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, glutathione reductase, GR, and glutathione peroxidase, GPx), were estimated in the brain tissue homogenates on day 35 of the study. Brain alterations were carefully quantified by semiquantitative grading scales - brain damage score (BDS). Oxidative stress parameters, MDA and AOPP were significantly highest in the asoxime-, obidoxime- and K075-treated groups (p < 0.001). The activity of SOD and CAT was significantly elevated in the obidoxime-, K048-, and K075-treated groups (p < 0.001). Besides, GR was markedly decreased in the obidoxime- and K074-treated groups (p < 0.01), while treatment with K048, K074 and K075 induced extremely high elevation in GPx levels (p < 0.001). In the same groups of rats, brain alterations associated with polymorphonuclear cell infiltrate were significantly more severe than those observed in animals receiving only asoxime or K027 (p < 0.001). The presented results confirmed that treatment with different oximes significantly improved the oxidative status and attenuated signs of inflammation in rats' brains. Presented results, together with our previously published data can help to predict likely adverse systemic toxic effects, and target organ systems, which are crucial for establishing risk categories, as well as in dose selection of K-oximes as drug candidates.


Asunto(s)
Cloruro de Obidoxima , Oximas , Ratas , Animales , Oximas/farmacología , Cloruro de Obidoxima/farmacología , Ratas Wistar , Acetilcolinesterasa/metabolismo , Productos Avanzados de Oxidación de Proteínas/metabolismo , Productos Avanzados de Oxidación de Proteínas/farmacología , Estrés Oxidativo , Encéfalo , Superóxido Dismutasa/metabolismo
20.
Arch Toxicol ; 97(10): 2499-2574, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597078

RESUMEN

A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno , Enfermedad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA