Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 13(1): 437, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056380

RESUMEN

BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA-target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. METHODS: We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA-target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling. RESULTS: We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < - 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < - 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation. CONCLUSION: We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation.


Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
2.
Clin Sci (Lond) ; 136(17): 1281-1301, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35894060

RESUMEN

Cardiac transplantation of adipose-derived stem cells (ASC) modulates the post-myocardial infarction (post-MI) repair response. Biomolecules secreted or shuttled within extracellular vesicles, such as exosomes, may participate in the concerted response. We investigated the exosome's microRNAs due to their capacity to fine-tune gene expression, potentially affecting the multicellular repair response. We profiled and quantified rat ASC-exosome miRNAs and used bioinformatics to select uncharacterized miRNAs down-regulated in post-MI related to cardiac repair. We selected and validated miR-196a-5p and miR-425-5p as candidates for the concerted response in neonatal cardiomyocytes, cardiac fibroblasts, endothelial cells, and macrophages using a high-content screening platform. Both miRNAs prevented cardiomyocyte ischemia-induced mitochondrial dysfunction and reactive oxygen species production, increased angiogenesis, and polarized macrophages toward the anti-inflammatory M2 immunophenotype. Moreover, miR-196a-5p reduced and reversed myofibroblast activation and decreased collagen expression. Our data provide evidence that the exosome-derived miR-196a-5p and miR-425-5p influence biological processes critical to the concerted multicellular repair response post-MI.


Asunto(s)
Exosomas , MicroARNs , Infarto del Miocardio , Tejido Adiposo/metabolismo , Animales , Células Endoteliales/metabolismo , Exosomas/genética , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Ratas , Células Madre
3.
Sci Rep ; 10(1): 16163, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999360

RESUMEN

Cardiac fibroblasts are present throughout the myocardium and are enriched in the microenvironment surrounding the ventricular conduction system (VCS). Several forms of arrhythmias are linked to VCS abnormalities, but it is still unclear whether VCS malformations are cardiomyocyte autonomous or could be linked to crosstalk between different cell types. We reasoned that fibroblasts influence cardiomyocyte specialization in VCS cells. We developed 2D and 3D culture models of neonatal rat cardiac cells to assess the influence of cardiac fibroblasts on cardiomyocytes. Cardiomyocytes adjacent to cardiac fibroblasts showed a two-fold increase in expression of VCS markers (NAV1.5 and CONTACTIN 2) and calcium transient duration, displaying a Purkinje-like profile. Fibroblast-conditioned media (fCM) was sufficient to activate VCS-related genes (Irx3, Scn5a, Connexin 40) and to induce action potential prolongation, a hallmark of Purkinge phenotype. fCM-mediated response seemed to be spatially-dependent as cardiomyocyte organoids treated with fCM had increased expression of connexin 40 and NAV1.5 primarily on its outer surface. Finally, NOTCH1 activation in both cardiomyocytes and fibroblasts was required for connexin 40 up-regulation (a proxy of VCS phenotype). Altogether, we provide evidence that cardiac fibroblasts influence cardiomyocyte specialization into VCS-like cells via NOTCH1 signaling in vitro.


Asunto(s)
Diferenciación Celular/fisiología , Fibroblastos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Miocitos Cardíacos/metabolismo , Receptor Notch1/metabolismo , Animales , Técnicas de Cultivo de Célula , Conexinas/metabolismo , Medios de Cultivo Condicionados , Fibroblastos/citología , Técnicas In Vitro , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/citología , Ratas , Ratas Wistar , Proteína alfa-5 de Unión Comunicante
4.
Sci Rep ; 10(1): 12350, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704142

RESUMEN

The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.


Asunto(s)
Células Endoteliales/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Animales , Animales Recién Nacidos , Medios de Cultivo Condicionados , Células Endoteliales/citología , Macrófagos/citología , Miocardio/citología , Miocitos Cardíacos , Ratas
5.
Kidney Blood Press Res ; 36(1): 320-34, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23235337

RESUMEN

BACKGROUND/AIMS: Fructose causes a sodium-sensitive hypertension and acutely reduces the urinary Na+ excretion, suggesting that it may regulate the activity of renal tubular sodium transporters. NHE3 is highly expressed in proximal tubule (PT), along with proteins that mediate fructose transport and metabolism. The present work was outlined to investigate whether fructose modulates proximal NHE3 activity and to elucidate the molecular mechanisms underlying this modulation. METHODS/RESULTS: Using in vivo stationary microperfusion, we observed that fructose stimulates NHE3 mediated JHCO3- reabsorption. The MAPK pathway is not involved in this activation, as demonstrated by using of MEK/MAPK inhibitors, whereas experiments using a PKA inhibitor suggest that PKA inhibition plays a role in this response. These results were confirmed in vitro by measuring the cell pH recovery rate after NH4Cl pulse in LLC-PK1, a pig PT cell line, which showed reduced cAMP levels and NHE3 phosphorylation at serine-552 (PKA consensus site) after fructose treatment. CONCLUSIONS: NHE3 activity is stimulated by fructose, which increases proximal tubule Na+ reabsorption. The molecular mechanisms involved in this process are mediated, at least in part, by downregulation of the PKA signaling pathway. Future studies are needed to address whether fructose-stimulated NHE3 activity may contribute to renal injury and hypertension.


Asunto(s)
Fructosa/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fructoquinasas/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Túbulos Renales Proximales/citología , Células LLC-PK1 , Masculino , Modelos Animales , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Intercambiador 3 de Sodio-Hidrógeno , Porcinos
6.
Biochem Biophys Res Commun ; 409(3): 470-6, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21600882

RESUMEN

Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11)M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways.


Asunto(s)
Angiotensina II/farmacología , Células Epiteliales/efectos de los fármacos , Riñón/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/genética , Transcripción Genética/efectos de los fármacos , Activación Transcripcional , Animales , Sitios de Unión , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células Epiteliales/metabolismo , Riñón/citología , Riñón/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Intercambiador 3 de Sodio-Hidrógeno , Factor de Transcripción Sp1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA