Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722384

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
2.
Biotechnol J ; 17(10): e2100684, 2022 Oct.
Article En | MEDLINE | ID: mdl-35666486

Phaeodactylum tricornutum is a marine diatom, rich in omega-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA) and brown pigment, that is, fucoxanthin. These high-value renewables (HVRs) have a high commercial and nutritional relevance. In this study, our focus was to enhance the productivities of such renewables by employing media engineering strategy via., photoautotrophic (P1, P2, P3) and mixotrophic (M1, M2, M3, M4) modes of cultivation with varying substrate combinations of carbon (glycerol: 0.1 m) and nitrogen (urea: 441 mm and/or sodium nitrate: 882 mm). Our results demonstrate that mixotrophic [M4] condition supplemented with glycerol (0.1 m) and urea (441 mm) feed enhanced productivities (mg L-1  day-1 ) as follows: biomass (770.0), total proteins (36.0), total lipids (22.0), total carbohydrates (23.0) with fatty acid methyl esters (9.6), EPA (2.7), and fucoxanthin (1.1), respectively. The overall yield of EPA represents 28% of total fatty acids in the mixotrophic [M4] condition. In conclusion, our improved strategy of feeding urea to a glycerol-supplemented medium defines a new efficient biomass valorization paradigm with cost-effective substrates for the production of HVRs in oleaginous diatoms P. tricornutum.


Diatoms , Microalgae , Carbon/metabolism , Cost-Benefit Analysis , Diatoms/metabolism , Eicosapentaenoic Acid/metabolism , Esters/metabolism , Glycerol/metabolism , Microalgae/metabolism , Nitrogen/metabolism , Urea/metabolism , Xanthophylls
3.
Cells ; 11(8)2022 04 13.
Article En | MEDLINE | ID: mdl-35455994

Tocopherols are the highly active form of the antioxidant molecules involved in scavenging of free radicals and protect the cell membranes from reactive oxygen species (ROS). In the present study, we focused on employing carbon supplementation with varying nitrate concentrations to enhance the total tocopherol yields in the native isolate Monoraphidium sp. CABeR41. The total tocopherol productivity of NRHC (Nitrate replete + 3% CO2) supplemented was (306.14 µg·L-1 d-1) which was nearly 2.5-fold higher compared to NRVLC (Nitrate replete + 0.03% CO2) (60.35 µg·L-1 d-1). The best tocopherol productivities were obtained in the NLHC (Nitrate limited + 3% CO2) supplemented cells (734.38 µg·L-1 d-1) accompanied by a significant increase in cell biomass (2.65-fold) and total lipids (6.25-fold). Further, global metabolomics using gas chromatography-mass spectrometry (GC-MS) was done in the defined conditions to elucidate the molecular mechanism during tocopherol accumulation. In the present study, the Monoraphidium sp. responded to nitrogen limitation by increase in nitrogen assimilation, with significant upregulation in gamma-Aminobutyric acid (GABA). Moreover, the tricarboxylic acid (TCA) cycle upregulation depicted increased availability of carbon skeletons and reducing power, which is leading to increased biomass yields along with the other biocommodities. In conclusion, our study depicts valorization of carbon dioxide as a cost-effective alternative for the enhancement of biomass along with tocopherols and other concomitant products like lipids and carotenoids in the indigenous strain Monoraphidium sp., as an industrial potential strain with relevance in nutraceuticals and pharmaceuticals.


Microalgae , Carbon Dioxide/metabolism , Dietary Supplements , Lipids , Microalgae/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Organic Chemicals/metabolism , Pharmaceutical Preparations/metabolism , Tocopherols/metabolism
4.
Front Microbiol ; 12: 693106, 2021.
Article En | MEDLINE | ID: mdl-34394032

Microalgae, due to their unique properties, gained attention for producing promising feedstocks having high contents of proteins, antioxidants, carotenoids, and terpenoids for applications in nutraceutical and pharmaceutical industries. Optimizing production of the high-value renewables (HVRs) in microalgae requires an in-depth understanding of their functional relationship of the genes involved in these metabolic pathways. In the present study, bioinformatic tools were employed for characterization of the protein-encoding genes of methyl erythritol phosphate (MEP) pathway involved in carotenoid and squalene biosynthesis based upon their conserved motif/domain organization. Our analysis demonstrates nearly 200 putative genes showing a conservation pattern within divergent microalgal lineages. Furthermore, phylogenomic studies confirm the close evolutionary proximity among these microalgal strains in the carotenoid and squalene biosynthetic pathways. Further analysis employing STRING predicts interactions among two rate-limiting genes, i.e., phytoene synthase (PSY) and farnesyl diphosphate farnesyl synthase (FPPS), which are specifically involved in the synthesis of carotenoids and squalene. Experimentally, to understand the carbon flux of these rate-limiting genes involved in carotenogenesis, an industrial potential strain, namely, Botryococcus braunii, was selected in this study for improved biomass productivity (i.e., 100 mg L-1 D-1) along with enhanced carotenoid content [0.18% dry cell weight (DCW)] when subjected to carbon supplementation. In conclusion, our approach of media engineering demonstrates that the channeling of carbon flux favors carotenogenesis rather than squalene synthesis. Henceforth, employing omics perspectives will further provide us with new insights for engineering regulatory networks for enhanced production of high-value carbon biorenewables without compromising growth.

5.
Front Plant Sci ; 11: 981, 2020.
Article En | MEDLINE | ID: mdl-32719702

Photosynthetic organisms fix inorganic carbon through carbon capture machinery (CCM) that regulates the assimilation and accumulation of carbon around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, few constraints that govern the central carbon metabolism are regulated by the carbon capture and partitioning machinery. In order to divert the cellular metabolism toward lipids and/or biorenewables it is important to investigate and understand the molecular mechanisms of the CO2-driven carbon partitioning. In this context, strategies for enhancement of CO2 fixation which will increase the overall biomass and lipid yields, can provide clues on understanding the carbon assimilation pathway, and may lead to new targets for genetic engineering in microalgae. In the present study, we have focused on the physiological and metabolomic response occurring within marine oleaginous microalgae Microchloropsis gaditana NIES 2587, under the influence of very-low CO2 (VLC; 300 ppm, or 0.03%) and high CO2 (HC; 30,000 ppm, or 3% v/v). Our results demonstrate that HC supplementation in M. gaditana channelizes the carbon flux toward the production of long chain polyunsaturated fatty acids (LC-PUFAs) and also increases the overall biomass productivities (up to 2.0 fold). Also, the qualitative metabolomics has identified nearly 31 essential metabolites, among which there is a significant fold change observed in accumulation of sugars and alcohols such as galactose and phytol in VLC as compared to HC. In conclusion, our focus is to understand the entire carbon partitioning and metabolic regulation within these photosynthetic cell factories, which will be further evaluated through multiomics approach for enhanced productivities of biomass, biofuels, and bioproducts (B3).

6.
Biotechnol Biofuels ; 12: 182, 2019.
Article En | MEDLINE | ID: mdl-31338124

BACKGROUND: Decreasing fossil fuels and its impact on global warming have led to an increasing demand for its replacement by sustainable renewable biofuels. Microalgae may offer a potential feedstock for renewable biofuels capable of converting atmospheric CO2 to substantial biomass and valuable biofuels, which is of great importance for the food and energy industries. Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amount of lipids under nutrient-deprived conditions. The present study aims to understand the metabolic imprints in order to elucidate the physiological mechanisms of lipid accumulations in this microalga under nutrient deprivation. RESULTS: Molecular profiles were obtained using gas chromatography-mass spectrometry (GC-MS) of P. kessleri subjected to nutrient deprivation. Relative quantities of more than 60 metabolites were systematically compared in all the three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, and nitrogen assimilation. Nitrogen starvation seems to trigger the triacylglycerol (TAG) accumulation rapidly, while the microalga seems to tolerate phosphorous limitation, hence increasing both biomass and lipid content. The metabolomic and lipidomic profiles have identified a few common metabolites such as citric acid and 2-ketoglutaric acid which play significant role in diverting flux towards acetyl-CoA leading to accumulation of neutral lipids, whereas other molecules such as trehalose involve in cell growth regulation, when subjected to nutrient deprivation. CONCLUSIONS: Understanding the entire system through qualitative (untargeted) metabolome approach in P. kessleri has led to identification of relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have potential for biofuel production, aiming towards the vision of tomorrow's bioenergy needs.

...