Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Chemphyschem ; : e202400086, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38661573

When a multi-component fluid contacts arigid solid substrate, the van der Waals interaction between fluids and substrate induces a depletion/adsorption layer depending on the intrinsic wettability of the system. In this study, we investigate the depletion/adsorption behaviors of A-B fluid system. We derive analytical expressions for the equilibrium layer thickness and the equilibrium composition distribution near the solid wall, based on the theories of de Gennes and Cahn. Our derivation is verified through phase-field simulations, wherein the substrate wettability, A-B interfacial tension, and temperature are systematically varied. Our findings underscore two pivotal mechanisms governing the equilibrium layer thickness. With an increase in the wall free energy, the substrate wettability dominates the layer formation, aligning with de Gennes' theory. When the interfacial tension increases, or temperature rises, the layer formation is determined by the A-B interactions, obeying Cahn's theory. Additionally, we extend our study to non-equilibrium systems where the initial composition deviates from the binodal line. Notably, macroscopic depletion/adsorption layers form on the substrate, which are significantly thicker than the equilibrium microscopic layers. This macroscopic layer formation is attributed to the interplay of phase separation and Ostwald ripening. We anticipate that the present finding could deepen our knowledge on the depletion/adsorption behaviors of immiscible fluids.

2.
Phys Rev Lett ; 132(12): 126202, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38579226

A droplet depositing on a solid substrate leads to the wetting phenomenon, such as dew on plant leaves. On an ideally smooth substrate, the classic Young's law has been employed to describe the wetting effect. However, no real substrate is ideally smooth at the microscale. Given this fact, we introduce a surface composition concept to scrutinize the wetting mechanism via considering the liquid-gas density asymmetry and the fluid-solid van der Waals interaction. The current concept enables one to comprehend counterintuitive phenomenon of contact-angle hysteresis on a smooth substrate and increase of contact angle with temperature as well as gas bubble wetting.

3.
Phys Rev E ; 109(2-1): 024208, 2024 Feb.
Article En | MEDLINE | ID: mdl-38491665

Brownian motion (BM) is pivotal in natural science for the stochastic motion of microscopic droplets. In this study, we investigate BM driven by thermal composition noise at submicro scales, where intermolecular diffusion and surface tension both are significant. To address BM of microscopic droplets, we develop two stochastic multiphase-field models coupled with the full Navier-Stokes equation, namely, Allen-Cahn-Navier-Stokes and Cahn-Hilliard-Navier-Stokes. Both models are validated against capillary-wave theory; the Einstein's relation for the Brownian coefficient D^{*}∼k_{B}T/r at thermodynamic equilibrium is recovered. Moreover, by adjusting the co-action of the diffusion, Marangoni effect, and viscous friction, two nonequilibrium phenomena are observed. (I) The droplet motion transits from the Brownian to Ballistic with increasing Marangoni effect which is emanated from the energy dissipation mechanism distinct from the conventional fluctuation-dissipation theorem. (II) The deterministic droplet motion is triggered by the noise induced nonuniform velocity field which leads to a novel droplet coalescence mechanism associated with the thermal noise.

4.
Sci Rep ; 14(1): 5350, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438392

Sintering is an important processing step in both ceramics and metals processing. The microstructure resulting from this process determines many materials properties of interest. Hence the accurate prediction of the microstructure, depending on processing and materials parameters, is of great importance. The phase-field method offers a way of predicting this microstructural evolution on a mesoscopic scale. The present paper employs this method to investigate concurrent densification and grain growth and the influence of stress on densification. Furthermore, the method is applied to simulate the entire freeze-casting process chain for the first time ever by simulating the freezing and sintering processes separately and passing the frozen microstructure to the present sintering model.

5.
Langmuir ; 40(10): 5162-5173, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38408752

In inkjet printing technology, one important factor influencing the printing quality and reliability of printed films is the interaction of the jetted ink with the substrate surface. This short-range interaction determines the wettability and the adhesion of the ink to the solid surface and is hence responsible for the final shape of the deposited ink. Here, we investigate wetting morphologies of inkjet-printed inks on patterned substrates by carefully designed experimental test structures and simulations. The contact angles, the surface properties, and drop shapes, as well as their influence on the device variability, are experimentally and theoretically analyzed. For the simulations, we employ the phase-field method, which is based on the free energy minimization of the two-phase system with the given wetting boundary conditions. Through a systematic investigation of printed drops on patterned substrates consisting of hydrophilic and hydrophobic areas, we report that the printed morphology is related not only to the designed layout and the drop volume but also to the printing strategy and the wettability. Furthermore, we show how one can modify the intrinsic wettability of the patterned substrates to enhance the printing quality and reliability. Based on the present findings, we cast light on the improvement of the fabrication quality of thin film transistors.

6.
Soft Matter ; 20(7): 1523-1542, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38265427

Liquid structures of thin-films and torus droplets are omnipresent in daily lives. The morphological evolution of liquid structures suspending in another immiscible fluid and sitting on a solid substrate is investigated by using three-dimensional (3D) phase-field (PF) simulations. Here, we address the evolution dynamics by scrutinizing the interplay of surface energy, kinetic energy, and viscous dissipation, which is characterized by Reynolds number Re and Weber number We. We observe special droplet breakup phenomena by varying Re and We. In addition, we gain the essential physical insights into controlling the droplet formation resulting from the morphological evolution of the liquid structures by characterizing the top and side profiles under different circumstances. We find that the shape evolution of the liquid structures is intimately related to the initial shape, Re, We as well as the intrinsic wettability of the substrate. Furthermore, it is revealed that the evolution dynamics are determined by the competition between the coalescence phenomenology and the hydrodynamic instability of the liquid structures. For the coalescence phenomenology, the liquid structure merges onto itself, while the hydrodynamic instability leads to the breakup of the liquid structure. Last but not least, we investigate the influence of wall relaxation on the breakup outcome of torus droplets on substrates with different contact angles. We shed light on how the key parameters including the initial shape, Re, We, wettability, and wall relaxation influence the droplet dynamics and droplet formation. These findings are anticipated to contribute insights into droplet-based systems, potentially impacting areas like ink-jet printing, drug delivery systems, and microfluidic devices, where the interplay of surface energy, kinetic energy, and viscous dissipation plays a crucial role.

7.
Article En | MEDLINE | ID: mdl-38083322

In biomedical engineering, deep neural networks are commonly used for the diagnosis and assessment of diseases through the interpretation of medical images. The effectiveness of these networks relies heavily on the availability of annotated datasets for training. However, obtaining noise-free and consistent annotations from experts, such as pathologists, radiologists, and biologists, remains a significant challenge. One common task in clinical practice and biological imaging applications is instance segmentation. Though, there is currently a lack of methods and open-source tools for the automated inspection of biomedical instance segmentation datasets concerning noisy annotations. To address this issue, we propose a novel deep learning-based approach for inspecting noisy annotations and provide an accompanying software implementation, AI2Seg, to facilitate its use by domain experts. The performance of the proposed algorithm is demonstrated on the medical MoNuSeg dataset and the biological LIVECell dataset.


Algorithms , Bioengineering , Humans , Biomedical Engineering , Health Personnel , Neural Networks, Computer
8.
Phys Rev E ; 108(5-1): 054121, 2023 Nov.
Article En | MEDLINE | ID: mdl-38115470

We deduce a thermodynamically consistent diffuse interface model to study the line tension phenomenon of sessile droplets. By extending the standard Cahn-Hilliard model via modifying the free energy functional due to the spatial reflection asymmetry at the substrate, we provide an alternative interpretation for the wall energy. In particular, we find the connection of the line tension effect with the droplet-matrix-substrate triple interactions. This finding reveals that the apparent contact angle deviating from Young's law is contributed by the wall energy reduction as well as the line energy minimization. Besides, the intrinsic negative line tension resulting from the curvature effect is observed in our simulations and shows good accordance with recent experiments [Tan et al. Phys. Rev. Lett. 130, 064003 (2023)0031-900710.1103/PhysRevLett.130.064003]. Moreover, our model sheds light upon the understanding of the wetting edge formation which results from the vying effect of wall energy and line tension.

9.
J Chem Phys ; 159(16)2023 Oct 28.
Article En | MEDLINE | ID: mdl-37870137

Cahn introduced the concept of wall energy to describe the interaction between two immiscible fluids and a solid wall [J. W. Cahn, J. Chem. Phys. 66, 3667-3672 (1977)]. This quintessential concept has been successfully applied to describe various wetting phenomena of a droplet in contact with a solid surface. The usually formulated wall free energy results in the so-called surface composition that is not equal to the bulk composition. This composition difference leads to a limited range of contact angles which can be achieved by the linear/high-order polynomial wall free energy. To address this issue and to improve the adaptability of the model, we symmetrically discuss the formulation of the wall free energy on the Young's contact angle via Allen-Cahn model. In our model, we modify the calculation of the fluid-solid interfacial tensions according to the Cahn's theory by considering the excess free energy contributed by the distorted composition profile induced by the surface effect. Additionally, we propose a semi-obstacle wall free energy which enforces the surface composition to be the bulk composition within the framework of bulk obstacle potential. By this way, the accuracy of the contact angle close to 0° and 180° is significantly improved in the phase-field simulations. We further reveal that the volume preservation term in the conservative Allen-Cahn model has a more significant impact on the wetting behavior on superhydrophobic surfaces than on hydrophilic surfaces, which is attributed to the curvature effect. Our findings provide alternative insights into wetting behavior on superhydrophilic and superhydrophobic surfaces.

10.
ACS Appl Mater Interfaces ; 15(43): 50469-50478, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37852613

Detailed knowledge about contamination and passivation compounds on the surface of lithium metal anodes (LMAs) is essential to enable their use in all-solid-state batteries (ASSBs). Time-of-flight secondary ion mass spectrometry (ToF-SIMS), a highly surface-sensitive technique, can be used to reliably characterize the surface status of LMAs. However, as ToF-SIMS data are usually highly complex, manual data analysis can be difficult and time-consuming. In this study, machine learning techniques, especially logistic regression (LR), are used to identify the characteristic secondary ions of 5 different pure lithium compounds. Furthermore, these models are applied to the mixture and LMA samples to enable identification of their compositions based on the measured ToF-SIMS spectra. This machine-learning-based analysis approach shows good performance in identifying characteristic ions of the analyzed compounds that fit well with their chemical nature. Moreover, satisfying accuracy in identifying the compositions of unseen new samples is achieved. In addition, the scope and limitations of such a strategy in practical applications are discussed. This work presents a robust analytical method that can assist researchers in simplifying the analysis of the studied lithium compound samples, offering the potential for broader applications in other material systems.

11.
Phys Rev E ; 107(2-1): 024803, 2023 Feb.
Article En | MEDLINE | ID: mdl-36932533

The solutions of multi-phase-field models exhibit boundary layer behavior not only along the binary interfaces but also at the common contacts of three or more phases, i.e., junctions. Hence, to completely determine the asymptotic behavior of a multi-phase-field model, the inner analysis of both types of layers has to be carried out, whereas, traditionally, the junctions part is ignored. This is remedied in the current work for a phase-field model of simple grain growth in two spatial dimensions. Since the junction neighbourhoods are fundamentally different from those of the binary interfaces, pertinent matching conditions had to be derived from scratch, which is also accomplished in a detailed manner. The leading-order matching analysis of the junctions exposed the restrictions present on the interfacial arrangement at the common meeting point, while the next-to-the-leading one uncovered the law governing the instantaneous motion of the latter. In particular, it is predicted for the considered model that the Young's law is always satisfied at a triple point, whether or not it is at rest. Surprisingly, the mobilities and the curvatures of the involving interfaces as well as the driving forces on the them do not affect this result. However, they do play a significant role in determining the instantaneous velocity of the junction point. The study has opened up many new directions for future research.

12.
Sci Rep ; 13(1): 5107, 2023 03 29.
Article En | MEDLINE | ID: mdl-36991084

Cancer is a devastating disease and the second leading cause of death worldwide. However, the development of resistance to current therapies is making cancer treatment more difficult. Combining the multi-omics data of individual tumors with information on their in-vitro Drug Sensitivity and Resistance Test (DSRT) can help to determine the appropriate therapy for each patient. Miniaturized high-throughput technologies, such as the droplet microarray, enable personalized oncology. We are developing a platform that incorporates DSRT profiling workflows from minute amounts of cellular material and reagents. Experimental results often rely on image-based readout techniques, where images are often constructed in grid-like structures with heterogeneous image processing targets. However, manual image analysis is time-consuming, not reproducible, and impossible for high-throughput experiments due to the amount of data generated. Therefore, automated image processing solutions are an essential component of a screening platform for personalized oncology. We present our comprehensive concept that considers assisted image annotation, algorithms for image processing of grid-like high-throughput experiments, and enhanced learning processes. In addition, the concept includes the deployment of processing pipelines. Details of the computation and implementation are presented. In particular, we outline solutions for linking automated image processing for personalized oncology with high-performance computing. Finally, we demonstrate the advantages of our proposal, using image data from heterogeneous practical experiments and challenges.


Algorithms , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Computer Systems , Learning
13.
Adv Mater ; 35(25): e2210745, 2023 Jun.
Article En | MEDLINE | ID: mdl-36779433

A droplet deposited on a solid substrate leads to the wetting phenomenon. A natural observation is the lotus effect, known for its superhydrophobicity. This special feature is engendered by the structured microstructure of the lotus leaf, namely, surface heterogeneity, as explained by the quintessential Cassie-Wenzel theory (CWT). In this work, recent designs of functional substrates are overviewed based on the CWT via manipulating the contact area between the liquid and the solid substrate as well as the intrinsic Young's contact angle. Moreover, the limitation of the CWT is discussed. When the droplet size is comparable to the surface heterogeneity, anisotropic wetting morphology often appears, which is beyond the scope of the Cassie-Wenzel work. In this case, several recent studies addressing the anisotropic wetting effect on chemically and mechanically patterned substrates are elucidated. Surface designs for anisotropic wetting morphologies are summarized with respect to the shape and the arrangement of the surface heterogeneity, the droplet volume, the deposition position of the droplet, as well as the mean curvature of the surface heterogeneity. A thermodynamic interpretation for the wetting effect and the corresponding open questions are presented at the end.

14.
Small ; 19(9): e2204512, 2023 03.
Article En | MEDLINE | ID: mdl-36538723

In the current drug discovery process, the synthesis of compound libraries is separated from biological screenings both conceptually and technologically. One of the reasons is that parallel on-chip high-throughput purification of synthesized compounds is still a major challenge. Here, on-chip miniaturized high-throughput liquid-liquid extraction in volumes down to 150 nL with efficiency comparable to or better than large-scale extraction utilizing separation funnels is demonstrated. The method is based on automated and programmable merging of arrays of aqueous nanoliter droplets with organic droplets. Multi-step extraction performed simultaneously or with changing conditions as well as handling of femtomoles of compounds are demonstrated. In addition, the extraction efficiency is analyzed with a fast optical readout as well as matrix-assisted laser desorption ionization-mass spectrometry on-chip detection. The new massively parallel and miniaturized purification method adds another important tool to the chemBIOS concept combining chemical combinatorial synthesis with biological screenings on the same miniaturized droplet microarray platform, which will be essential to accelerate drug discovery.


Drug Discovery , Water , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Oligonucleotide Array Sequence Analysis
15.
J Phys Condens Matter ; 34(44)2022 Sep 05.
Article En | MEDLINE | ID: mdl-35985313

The porous microstructure has been widely observed in a variety of polymer solutions that have been broadly applied in many industry fields. Phase separation is one of the common mechanisms for the formation of the porous microstructure in binary polymeric mixtures. Previous studies for the formation of porous microstructures mostly focus on the separation of the bulk phase. However, there is a paucity of investigation for the phase separation of polymer mixtures contacting the solid substrate. When the polymeric liquid mixtures interact with the solid substrate, the wetting boundary condition has to be taken into account. In this work, we present a phase-field model which is coupled with the wetting boundary condition to study the phase separation in binary polymer solutions. Our consideration is based on the polymerization-induced phase separation, and thermally induced phase separation by using the Flory-Huggins model. By taking the wetting effect into account, we find that polymer droplets spontaneously occur in the microstructure, even though the bulk composition is outside the spinodal region. This phenomenon is caused by the surface composition resulting from the wetting effect that was often overlooked in literature. For the phase separation in the binary polymer mixture, we also study the impact of the temperature gradient on the microstructural evolution. The porosity, the number of droplets, and the mean radius of the droplets are rationalized with the temperature gradient.

16.
Membranes (Basel) ; 12(7)2022 Jun 21.
Article En | MEDLINE | ID: mdl-35877842

The working principle of lateral flow assays, such as the widely used COVID-19 rapid tests, is based on the capillary-driven liquid transport of a sample fluid to a test line using porous polymeric membranes as the conductive medium. In order to predict this wicking process by simplified analytical models, it is essential to determine an effective capillary radius for the highly porous and open-pored membranes. In this work, a parametric study is performed with selected simplified structures, representing the complex microstructure of the membrane. For this, a phase-field approach with a special wetting boundary condition to describe the meniscus formation and the corresponding mean surface curvature for each structure setup is used. As a main result, an analytical correlation between geometric structure parameters and an effective capillary radius, based on a correction factor, are obtained. The resulting correlation is verified by applying image analysis methods on reconstructed computer tomography scans of two different porous polymeric membranes and thus determining the geometric structure parameters. Subsequently, a macroscale flow model that includes the correlated effective pore size and geometrical capillary radius is applied, and the results are compared with wicking experiments. Based on the derived correction function, it is shown that the analytical prediction of the wicking process in highly porous polymeric membranes is possible without the fitting of experimental wicking data. Furthermore, it can be seen that the estimated effective pore radius of the two membranes is 8 to 10 times higher than their geometric mean pore radii.

17.
Materials (Basel) ; 15(10)2022 May 23.
Article En | MEDLINE | ID: mdl-35629755

Triply periodic minimal surface (TPMS) structures have a very good lightweight potential, due to their surface-to-volume ratio, and thus are contents of various applications and research areas, such as tissue engineering, crash structures, or heat exchangers. While TPMS structures with a uniform porosity or a linear gradient have been considered in the literature, this paper focuses on the investigation of the mechanical properties of gyroid structures with non-linear porosity gradients. For the realisation of the different porosity gradients, an algorithm is introduced that allows the porosity to be adjusted by definable functions. A parametric study is performed on the resulting gyroid structures by performing mechanical simulations in the linear deformation regime. The transformation into dimensionless parameters enables material-independent statements, which is possible due to linearity. Thus, the effective elastic behaviour depends only on the structure geometry. As a result, by introducing non-linear gradient functions and varying the density of the structure over the entire volume, specific strengths can be generated in certain areas of interest. A computational design of porosity enables an accelerated application-specific structure development in the field of engineering.

18.
Langmuir ; 38(22): 6882-6895, 2022 Jun 07.
Article En | MEDLINE | ID: mdl-35617199

Microscale Janus particles have versatile potential applications in many physical and biomedical fields, such as microsensor, micromotor, and drug delivery. Here, we present a phase-field approach of multicomponent and multiphase to investigate the Janus droplet formation via thermally induced phase separation. The crucial kinetics for the formation of Janus droplets consisting of two polymer species and a solvent component via an interplay of both diffusion and convection is considered in the Cahn-Hilliard-Navier-Stokes equation. The simulation results of the phase-field model show that unequal interfacial tensions between the two polymer species and the solvent result in asymmetric phase separation in the formation process of Janus droplets. This asymmetric phase separation plays a vital role in the establishment of the so-called core-shell structure that has been observed in previous experiments. By varying the droplet size, the surface tension, and the molecular interaction between the polymer species, several novel droplet morphologies are predicted in the development process of Janus droplets. Moreover, we stress that the hydrodynamics should be reckoned as a non-negligible mechanism that not only accelerates the Janus droplet evolution but also has great impacts on the coarsening and coalescence of the Janus droplets.

19.
Phys Rev E ; 105(1-1): 014802, 2022 Jan.
Article En | MEDLINE | ID: mdl-35193219

Although multi-phase-field models are applied extensively to simulate various pattern formations, their asymptotic analysis is not typically performed at a level of rigor common to their scalar counterparts. Most of the time, arguments given, such as for the justification of the selection of the bulk phases or the phasal composition of the interfaces between them, are only heuristic in nature. In particular, the reduction of the multi-phase-field models to two-phase ones, so as to ascertain the dynamical laws captured by them, can only be termed as hand waving, at best. It is also common to land the starting point of the analysis directly at a point where the binary interfaces have already formed and continue therefrom with the prediction of their instantaneous evolution. However, exactly how a given initial filling transitions to a state characterized by the presence of bulk phases separated by internal layers, and with what distribution, is rarely addressed. Moreover, a detailed and systematic study, focused on the numerical realization of the asymptotics predicted laws, has never been reported before for multi-phase-field models. In the current article, endorsing against these undesirabilities of the common presentations, a full-fledged asymptotic analysis of a multi-grain-growth phase-field model is put forth and numerically verified. However, the consideration is only limited to the analysis of binary interfaces; that of junctions (triple points, quadruple points, etc.) is deferred to a later work.

20.
Materials (Basel) ; 15(3)2022 Feb 02.
Article En | MEDLINE | ID: mdl-35161105

For the first time, the experimental processing condition of a rotating directional solidification is simulated in this work, by means of a grand-potential-based phase-field model. To simulate the rotating directional solidification, a new simulation setup with a rotating temperature field is introduced. The newly developed configuration can be beneficent for a more precise study of the ongoing adjustment mechanisms during temperature gradient controlled solidification processes. Ad hoc, the solidification of the ternary eutectic system Bi-In-Sn with three distinct solid phases α,ß,δ is studied in this paper. For this system, accurate in situ observations of both directional and rotating directional solidification experiments exist, which makes the system favorable for the investigation. The two-dimensional simulation studies are performed for both solidification processes, considering the reported 2D patterns in the steady state growth of the bulk samples. The desired αßαδ phase ordering repeat unit is obtained within both simulation types. By considering anisotropy of the interfacial energies, experimentally reported tilted lamellae with respect to normal vectors of the solidification front, as well as predominant role of αß anisotropy in tilting phenomenon, are observed. The results are validated by using the Jackson-Hunt analysis and by comparing with the existing experimental data. The convincing agreements indicate the applicability of the introduced method.

...