Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 7(23): 7169-7183, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792794

RESUMEN

E-cadherin is a crucial regulator of epithelial cell-to-cell adhesion and an established tumor suppressor. Aside epithelia, E-cadherin expression marks the erythroid cell lineage during human but not mouse hematopoiesis. However, the role of E-cadherin in human erythropoiesis remains unknown. Because rat erythropoiesis was postulated to reflect human erythropoiesis more closely than mouse erythropoiesis, we investigated E-cadherin expression in rat erythroid progenitors. E-cadherin expression is conserved within the erythroid lineage between rat and human. In response to anemia, erythroblasts in rat bone marrow (BM) upregulate E-cadherin as well as its binding partner ß-catenin. CRISPR/Cas9-mediated knock out of E-cadherin revealed that E-cadherin expression is required to stabilize ß-catenin in human and rat erythroblasts. Suppression of ß-catenin degradation by glycogen synthase kinase 3ß (GSK3ß) inhibitor CHIR99021 also enhances ß-catenin stability in human erythroblasts but hampers erythroblast differentiation and survival. In contrast, direct activation of ß-catenin signaling, using an inducible, stable ß-catenin variant, does not perturb maturation or survival of human erythroblasts but rather enhances their differentiation. Although human erythroblasts do not respond to Wnt ligands and direct GSK3ß inhibition even reduces their survival, we postulate that ß-catenin stability and signaling is mostly controlled by E-cadherin in human and rat erythroblasts. In response to anemia, E-cadherin-driven upregulation and subsequent activation of ß-catenin signaling may stimulate erythroblast differentiation to support stress erythropoiesis in the BM. Overall, we uncover E-cadherin/ß-catenin expression to mark stress erythropoiesis in rat BM. This may provide further understanding of the underlying molecular regulation of stress erythropoiesis in the BM, which is currently poorly understood.


Asunto(s)
Anemia , beta Catenina , Humanos , Ratas , Ratones , Animales , beta Catenina/metabolismo , Eritropoyesis/fisiología , Glucógeno Sintasa Quinasa 3 beta , Cadherinas/genética , Cadherinas/metabolismo
2.
Biomolecules ; 12(11)2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421719

RESUMEN

E-cadherin is a key regulator of epithelial cell-cell adhesion, the loss of which accelerates tumor growth and invasion. E-cadherin is also expressed in hematopoietic cells as well as epithelia. The function of hematopoietic E-cadherin is, however, mostly elusive. In this study, we explored the validity of mouse models to functionally investigate the role of hematopoietic E-cadherin in human hematopoiesis. We generated a hematopoietic-specific E-cadherin knockout mouse model. In mice, hematopoietic E-cadherin is predominantly expressed within the basophil lineage, the expression of which is dispensable for the generation of basophils. However, neither E-cadherin mRNA nor protein were detected in human basophils. In contrast, human hematopoietic E-cadherin marks the erythroid lineage. E-cadherin expression in hematopoiesis thereby revealed striking evolutionary differences between the basophil and erythroid cell lineage in humans and mice. This is remarkable as E-cadherin expression in epithelia is highly conserved among vertebrates including humans and mice. Our study therefore revealed that the mouse does not represent a suitable model to study the function of E-cadherin in human hematopoiesis and an alternative means to study the role of E-cadherin in human erythropoiesis needs to be developed.


Asunto(s)
Basófilos , Hematopoyesis , Humanos , Ratones , Animales , Basófilos/metabolismo , Linaje de la Célula/genética , Hematopoyesis/genética , Cadherinas/genética , Cadherinas/metabolismo , Ratones Noqueados
3.
Blood Adv ; 5(18): 3726-3735, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34516644

RESUMEN

Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/ß-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/ß-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/ß-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/ß-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/ß-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/ß-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/ß-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Eritropoyesis , Humanos , Vía de Señalización Wnt
4.
Cancer Res ; 80(7): 1486-1497, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060147

RESUMEN

Invasive lobular carcinoma (ILC) accounts for 8%-14% of all breast cancer cases. The main hallmark of ILCs is the functional loss of the cell-cell adhesion protein E-cadherin. Nonetheless, loss of E-cadherin alone does not predispose mice to mammary tumor development, indicating that additional perturbations are required for ILC formation. Previously, we identified an N-terminal truncation variant of ASPP2 (t-ASPP2) as a driver of ILC in mice with mammary-specific loss of E-cadherin. Here we showed that expression of t-ASPP2 induced actomyosin relaxation, enabling adhesion and survival of E-cadherin-deficient murine mammary epithelial cells on stiff matrices like fibrillar collagen. The induction of actomyosin relaxation by t-ASPP2 was dependent on its interaction with protein phosphatase 1, but not on t-ASPP2-induced YAP activation. Truncated ASPP2 collaborated with both E-cadherin loss and PI3K pathway activation via PTEN loss in ILC development. t-ASPP2-induced actomyosin relaxation was required for ILC initiation, but not progression. Conversely, YAP activation induced by t-ASPP2 contributed to tumor growth and progression while being dispensable for tumor initiation. Together, these findings highlight two distinct mechanisms through which t-ASPP2 promotes ILC initiation and progression. SIGNIFICANCE: Truncated ASPP2 cooperates with E-cadherin and PTEN loss to drive breast cancer initiation and progression via two distinct mechanisms. ASPP2-induced actomyosin relaxation drives tumor initiation, while ASPP2-mediated YAP activation enhances tumor progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/genética , Carcinoma Lobular/patología , Proteínas de Ciclo Celular/metabolismo , Neoplasias Mamarias Experimentales/patología , Proteínas Supresoras de Tumor/genética , Actomiosina/metabolismo , Animales , Cadherinas/genética , Carcinogénesis/patología , Carcinoma Lobular/inducido químicamente , Carcinoma Lobular/genética , Adhesión Celular/genética , Células Cultivadas , Elementos Transponibles de ADN/genética , Progresión de la Enfermedad , Células Epiteliales , Femenino , Imidazoles/toxicidad , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/genética , Ratones , Ratones Transgénicos , Mutación , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Oxadiazoles/toxicidad , Cultivo Primario de Células , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP
5.
Nat Commun ; 10(1): 3800, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444332

RESUMEN

E-cadherin (CDH1) is a master regulator of epithelial cell adherence junctions and a well-established tumor suppressor in Invasive Lobular Carcinoma (ILC). Intriguingly, somatic inactivation of E-cadherin alone in mouse mammary epithelial cells (MMECs) is insufficient to induce tumor formation. Here we show that E-cadherin loss induces extrusion of luminal MMECs to the basal lamina. Remarkably, E-cadherin-deficient MMECs can breach the basal lamina but do not disseminate into the surrounding fat pad. Basal lamina components laminin and collagen IV supported adhesion and survival of E-cadherin-deficient MMECs while collagen I, the principle component of the mammary stromal micro-environment did not. We uncovered that relaxation of actomyosin contractility mediates adhesion and survival of E-cadherin-deficient MMECs on collagen I, thereby allowing ILC development. Together, these findings unmask the direct consequences of E-cadherin inactivation in the mammary gland and identify aberrant actomyosin contractility as a critical barrier to ILC formation.


Asunto(s)
Actomiosina/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinoma Lobular/patología , Neoplasias Mamarias Experimentales/patología , Animales , Neoplasias de la Mama/genética , Cadherinas/genética , Carcinoma Lobular/genética , Adhesión Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Células Epiteliales , Femenino , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Ratones , Ratones Transgénicos , Cultivo Primario de Células
6.
Nat Genet ; 49(8): 1219-1230, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28650484

RESUMEN

Invasive lobular carcinoma (ILC) is the second most common breast cancer subtype and accounts for 8-14% of all cases. Although the majority of human ILCs are characterized by the functional loss of E-cadherin (encoded by CDH1), inactivation of Cdh1 does not predispose mice to develop mammary tumors, implying that mutations in additional genes are required for ILC formation in mice. To identify these genes, we performed an insertional mutagenesis screen using the Sleeping Beauty transposon system in mice with mammary-specific inactivation of Cdh1. These mice developed multiple independent mammary tumors of which the majority resembled human ILC in terms of morphology and gene expression. Recurrent and mutually exclusive transposon insertions were identified in Myh9, Ppp1r12a, Ppp1r12b and Trp53bp2, whose products have been implicated in the regulation of the actin cytoskeleton. Notably, MYH9, PPP1R12B and TP53BP2 were also frequently aberrated in human ILC, highlighting these genes as drivers of a novel oncogenic pathway underlying ILC development.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Lobular/genética , Mutagénesis Insercional , Animales , Cadherinas/genética , Línea Celular , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Femenino , Haplotipos , Humanos , Masculino , Ratones , Cadenas Pesadas de Miosina , Fosfatasa de Miosina de Cadena Ligera/genética , Miosina Tipo IIA no Muscular/genética , Transposasas/genética , Proteínas Supresoras de Tumor/genética
7.
Cell Rep ; 16(8): 2087-2101, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27524621

RESUMEN

Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC.


Asunto(s)
Cadherinas/genética , Carcinoma Lobular/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias Mamarias Experimentales/genética , Fosfohidrolasa PTEN/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Antineoplásicos/farmacología , Cadherinas/deficiencia , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/mortalidad , Carcinoma Lobular/patología , Línea Celular Tumoral , Supervivencia Celular , Femenino , Perfilación de la Expresión Génica , Imidazoles/farmacología , Integrasas/genética , Integrasas/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/mortalidad , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Invasividad Neoplásica , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Quinolinas/farmacología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transducción de Señal , Análisis de Supervivencia , Microambiente Tumoral
8.
Genes Dev ; 30(12): 1470-80, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27340177

RESUMEN

Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Carcinoma Lobular/genética , Carcinoma Lobular/fisiopatología , Edición Génica , Glándulas Mamarias Humanas/fisiopatología , Animales , Sistemas CRISPR-Cas , Cadherinas/genética , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Ratones
9.
J Cell Sci ; 125(Pt 14): 3430-42, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22467858

RESUMEN

The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell-cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell-cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell-cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell-cell contacts.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fosfoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Uniones Adherentes/metabolismo , Secuencia de Aminoácidos , Línea Celular , Proteínas Dishevelled , Células HeLa , Humanos , Pulmón/citología , Ubiquitina-Proteína Ligasas Nedd4 , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Ubiquitinación
10.
Biochem J ; 442(1): 13-25, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22280013

RESUMEN

Post-translational modifications are used by cells to link additional information to proteins. Most modifications are subtle and concern small moieties such as a phosphate group or a lipid. In contrast, protein ubiquitylation entails the covalent attachment of a full-length protein such as ubiquitin. The protein ubiquitylation machinery is remarkably complex, comprising more than 15 Ubls (ubiquitin-like proteins) and several hundreds of ubiquitin-conjugating enzymes. Ubiquitin is best known for its role as a tag that induces protein destruction either by the proteasome or through targeting to lysosomes. However, addition of one or more Ubls also affects vesicular traffic, protein-protein interactions and signal transduction. It is by now well established that ubiquitylation is a component of most, if not all, cellular signalling pathways. Owing to its abundance in controlling cellular functions, ubiquitylation is also of key relevance to human pathologies, including cancer and inflammation. In the present review, we focus on its role in the control of cell adhesion, polarity and directional migration. It will become clear that protein modification by Ubls occurs at every level from the receptors at the plasma membrane down to cytoskeletal components such as actin, with differential consequences for the pathway's final output. Since ubiquitylation is fast as well as reversible, it represents a bona fide signalling event, which is used to fine-tune a cell's responses to receptor agonists.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Ubiquitina/metabolismo , Cadherinas/fisiología , Polaridad Celular/efectos de los fármacos , Endopeptidasas/metabolismo , Humanos , Cadenas alfa de Integrinas/metabolismo , Cadenas beta de Integrinas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Plaquinas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
11.
PLoS One ; 6(6): e20727, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695142

RESUMEN

Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.


Asunto(s)
Enfermedades de la Médula Ósea/genética , Insuficiencia Pancreática Exocrina/genética , Espacio Intracelular/metabolismo , Mutación/genética , Proteínas/genética , Proteínas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Lipomatosis , Modelos Biológicos , Proteínas Mutantes/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Síndrome de Shwachman-Diamond , Fracciones Subcelulares/metabolismo
12.
J Cell Sci ; 124(Pt 14): 2375-88, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21693584

RESUMEN

The Rac1 GTPase controls cytoskeletal dynamics and is a key regulator of cell spreading and migration mediated by signaling through effector proteins, such as the PAK kinases and the Scar and WAVE proteins. We previously identified a series of regulatory proteins that associate with Rac1 through its hypervariable C-terminal domain, including the Rac1 activator ß-Pix (also known as Rho guanine-nucleotide-exchange factor 7) and the membrane adapter caveolin-1. Here, we show that Rac1 associates, through its C-terminus, with the F-BAR domain protein PACSIN2, an inducer of membrane tubulation and a regulator of endocytosis. We show that Rac1 localizes with PACSIN2 at intracellular tubular structures and on early endosomes. Active Rac1 induces a loss of PACSIN2-positive tubular structures. By contrast, Rac1 inhibition results in an accumulation of PACSIN2-positive tubules. In addition, PACSIN2 appears to regulate Rac1 signaling; siRNA-mediated loss of PACSIN2 increases the levels of Rac1-GTP and promotes cell spreading and migration in a wound healing assay. Moreover, ectopic expression of PACSIN2 reduces Rac1-GTP levels in a fashion that is dependent on the PACSIN2-Rac1 interaction, on the membrane-tubulating capacity of PACSIN2 and on dynamin. These data identify the BAR-domain protein PACSIN2 as a Rac1 interactor that regulates Rac1-mediated cell spreading and migration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Células Jurkat , Microtúbulos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Transfección , Proteína de Unión al GTP rac1/genética , Dominios Homologos src
13.
Cell Adh Migr ; 5(1): 59-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20948305

RESUMEN

The regulation of Focal Adhesion (FA) dynamics is a key aspect of cellular motility. FAs concentrate integrins and associated cytoskeletal elements as well as a large number of regulatory proteins, including adapters, kinases and small GTPases of the Rho Family. We have recently shown that activated Rac1 can localize to FAs and can initiate the accumulation of the adapter protein Caveolin1 (Cav1) at FAs. As reported by several groups including ours, this translocation requires Cav1 phosphorylation at Tyr14, presumably by Src. Here we provide additional data regarding this process and briefly review recent literature. Finally, we incorporated the different pieces of available information into a mechanistic model. This model proposes that local Rac1 activation initiates a series of events that involve endosomal traffic of Cav1 and Src, targeting these proteins to or near FAs. Next, within specific membrane domains, Src can mediate the phosphorylation of Cav1 at Tyr 14, which is important for the stable FA localization of Cav1. Finally, dephosphorylation of Cav1 may represent a key step required for internalization, FA turnover and cell motility.


Asunto(s)
Caveolina 1/metabolismo , Adhesión Celular/fisiología , Adhesiones Focales/metabolismo , Modelos Biológicos , Proteína de Unión al GTP rac1/metabolismo , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Adhesiones Focales/fisiología , Células HeLa , Humanos , Integrinas/metabolismo , Fosforilación , Transducción de Señal , Familia-src Quinasas/fisiología
14.
J Cell Sci ; 123(Pt 23): 4011-8, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21084561

RESUMEN

Rho-like guanosine triphosphatases (RhoGTPases) control many aspects of cellular physiology through their effects on the actin cytoskeleton and on gene transcription. Signalling by RhoGTPases is tightly coordinated and requires a series of regulatory proteins, including guanine-nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). GEFs and GAPs regulate GTPase cycling between the active (GTP-bound) and inactive (GDP-bound) states, whereas GDI is a cytosolic chaperone that binds inactive RhoGTPases. Like many other proteins, RhoGTPases are subject to degradation following the covalent conjugation of ubiquitin. There have been increasing indications that ubiquitylation of small GTPases occurs in a regulated fashion, primarily upon activation, and is an important means to control signalling output. Recent work has identified cellular proteins that control RasGTPase and RhoGTPase ubiquitylation and degradation, allowing us to amend the canonical model for GTPase (in)activation. Moreover, accumulating evidence for indirect regulation of GTPase function through the ubiquitylation of GTPase regulators makes this post-translational modification a key feature of GTPase-dependent signalling pathways. Here, we will discuss these recent insights into the regulation of RhoGTPase ubiquitylation and their relevance for cell signalling.


Asunto(s)
Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Ubiquitinación , Proteínas de Unión al GTP rho/genética
15.
J Cell Sci ; 123(Pt 11): 1948-58, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20460433

RESUMEN

Directional cell migration is crucially dependent on the spatiotemporal control of intracellular signalling events. These events regulate polarized actin dynamics, resulting in protrusion at the front of the cell and contraction at the rear. The actin cytoskeleton is regulated through signalling by Rho-like GTPases, such as RhoA, which stimulates myosin-based contractility, and CDC42 and Rac1, which promote actin polymerization and protrusion. Here, we show that Rac1 binds the adapter protein caveolin-1 (Cav1) and that Rac1 activity promotes Cav1 accumulation at Rac1-positive peripheral adhesions. Using Cav1-deficient mouse fibroblasts and depletion of Cav1 expression in human epithelial and endothelial cells mediated by small interfering RNA and short hairpin RNA, we show that loss of Cav1 induces an increase in Rac1 protein and its activated, GTP-bound form. Cav1 controls Rac1 protein levels by regulating ubiquitylation and degradation of activated Rac1 in an adhesion-dependent fashion. Finally, we show that Rac1 ubiquitylation is not required for effector binding, but regulates the dynamics of Rac1 at the periphery of the cell. These data extend the canonical model of Rac1 inactivation and uncover Cav1-regulated polyubiquitylation as an additional mechanism to control Rac1 signalling.


Asunto(s)
Caveolina 1/metabolismo , Extensiones de la Superficie Celular/metabolismo , Fibroblastos/metabolismo , Adhesiones Focales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Animales , Caveolina 1/genética , Movimiento Celular , Extensiones de la Superficie Celular/efectos de los fármacos , Retroalimentación Fisiológica , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Adhesiones Focales/efectos de los fármacos , Células HeLa , Humanos , Ratones , Microscopía Confocal , Pironas/farmacología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , Proteína de Unión al GTP rac1/antagonistas & inhibidores
16.
Retrovirology ; 2: 52, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16107223

RESUMEN

The retroviral phenomenon of superinfection resistance (SIR) defines an interference mechanism that is established after primary infection, preventing the infected cell from being superinfected by a similar type of virus. This review describes our present understanding of the underlying mechanisms of SIR established by three characteristic retroviruses: Murine Leukaemia Virus (MuLV), Foamy Virus (FV), and Human Immunodeficiency Virus (HIV). In addition, SIR is discussed with respect to HIV superinfection of humans. MuLV resistant mice exhibit two genetic resistance traits related to SIR. The cellular Fv4 gene expresses an Env related protein that establishes resistance against MuLV infection. Another mouse gene (Fv1) mediates MuLV resistance by expression of a sequence that is distantly related to Gag and that blocks the viral infection after the reverse transcription step. FVs induce two distinct mechanisms of superinfection resistance. First, expression of the Env protein results in SIR, probably by occupancy of the cellular receptors for FV entry. Second, an increase in the concentration of the viral Bet (Between-env-and-LTR-1-and-2) protein reduces proviral FV gene expression by inhibition of the transcriptional activator protein Tas (Transactivator of spumaviruses). In contrast to SIR in FV and MuLV infection, the underlying mechanism of SIR in HIV-infected cells is poorly understood. CD4 receptor down-modulation, a major characteristic of HIV-infected cells, has been proposed to be the main mechanism of SIR against HIV, but data have been contradictory. Several recent studies report the occurrence of HIV superinfection in humans; an event associated with the generation of recombinant HIV strains and possibly with increased disease progression. The role of SIR in protecting patients from HIV superinfection has not been studied so far. The phenomenon of SIR may also be important in the protection of primates that are vaccinated with live attenuated simian immunodeficiency virus (SIV) against pathogenic SIV variants. As primate models of SIV infection closely resemble HIV infection, a better knowledge of SIR-induced mechanisms could contribute to the development of an HIV vaccine or other antiviral strategies.


Asunto(s)
Infecciones por VIH/inmunología , Virus de la Leucemia Murina , Infecciones por Retroviridae/inmunología , Spumavirus , Interferencia Viral , Animales , Antígenos CD4/fisiología , Linfocitos T CD8-positivos/inmunología , Productos del Gen env/fisiología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas/genética , Proteínas/fisiología , Proteínas de los Retroviridae/fisiología , Canales Catiónicos TRPV/fisiología
17.
Cell Mol Neurobiol ; 25(8): 1209-23, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16388333

RESUMEN

1.Melanin-concentrating hormone (MCH) and orexin-containing neurons participate in hypothalamic circuits that control energy homeostasis. While these two systems have projections to widespread target areas within the central nervous system, little is known about intrinsic characteristics and the molecular composition of both the MCH and orexin neurons themselves. 2. By a combinatory approach of quantitative immunocytochemical identification and analysis with laser microdissection and semi-quantitative Real-time RT-PCR, here we present multi-transcriptional profiling of MCH and orexin neurons in the rat lateral hypothalamus. 3. Immunocytochemical analysis showed that orexin peptide expression was increased after fasting both during the activity and resting period of rats, whereas MCH peptide content was only clearly upregulated at resting phase. Subsequent transcriptional profiling showed distinct expression patterns of MCH, orexin and cocaine-amphetamine regulated transcript (CART) between MCH and orexin neurons. A low expression level of dynorphin was found both in MCH and orexin neurons. Receptor expression profiles, reflecting interaction with neuropeptide Y, melanocortins, leptin, glucocorticoids and GABA, showed approximately similar expression patterns among the MCH and orexin neuronal systems. Expression of glutamate- and GABA-markers revealed a possible contributory role of both glutamate and GABA in functional output of MCH and orexin neurons. 4. This method allowed differential screening at mRNA level after immunocytochemical neuron identification and analysis in heterogeneous brain regions, which can further specify functioning of the individual neurons. With respect to MCH and orexin neurons, this study emphasizes that these neurons are targets for stimulatory and inhibitory signals from other brain regions including the arcuate nucleus and the general circulation. Additionally, both glutamate and GABA appear to be involved in MCH and orexin neuronal functioning related to feeding and regulation of the energy balance.


Asunto(s)
Área Hipotalámica Lateral/metabolismo , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Regulación del Apetito/fisiología , Ritmo Circadiano/fisiología , Privación de Alimentos/fisiología , Perfilación de la Expresión Génica/métodos , Ácido Glutámico/metabolismo , Hormonas/metabolismo , Área Hipotalámica Lateral/citología , Hormonas Hipotalámicas/genética , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Melaninas/genética , Microdisección/métodos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/citología , Neuronas/citología , Neuropéptidos/genética , Receptores de Orexina , Orexinas , Hormonas Hipofisarias/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido/metabolismo , Receptores de la Hormona Hipofisaria/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/fisiología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...