Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sensors (Basel) ; 23(10)2023 May 20.
Article En | MEDLINE | ID: mdl-37430841

Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF-DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF-DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.


Microfluidics , Nucleic Acids , Biological Assay , Lab-On-A-Chip Devices , Technology
2.
Lab Chip ; 23(14): 3238-3244, 2023 Jul 12.
Article En | MEDLINE | ID: mdl-37341773

Droplet-based microfluidic technology is a powerful tool for generating large numbers of monodispersed nanoliter-sized droplets for ultra-high throughput screening of molecules or single cells. Yet further progress in the development of methods for the real-time detection and measurement of passing droplets is needed for achieving fully automated systems and ultimately scalability. Existing droplet monitoring technologies are either difficult to implement by non-experts or require complex experimentation setups. Moreover, commercially available monitoring equipment is expensive and therefore limited to a few laboratories worldwide. In this work, we validated for the first time an easy-to-use, open-source Bonsai visual programming language to accurately measure in real-time droplets generated in a microfluidic device. With this method, droplets are found and characterized from bright-field images with high processing speed. We used off-the-shelf components to achieve an optical system that allows sensitive image-based, label-free, and cost-effective monitoring. As a test of its use we present the results, in terms of droplet radius, circulation speed and production frequency, of our method and compared its performance with that of the widely-used ImageJ software. Moreover, we show that similar results are obtained regardless of the degree of expertise. Finally, our goal is to provide a robust, simple to integrate, and user-friendly tool for monitoring droplets, capable of helping researchers to get started in the laboratory immediately, even without programming experience, enabling analysis and reporting of droplet data in real-time and closed-loop experiments.

3.
Front Neurosci ; 12: 715, 2018.
Article En | MEDLINE | ID: mdl-30349453

Extracellular microelectrodes have been widely used to measure brain activity, yet there are still basic questions about the requirements for a good extracellular microelectrode. One common source of confusion is how much an electrode's impedance affects the amplitude of extracellular spikes and background noise. Here we quantify the effect of an electrode's impedance on data quality in extracellular recordings, which is crucial for both the detection of spikes and their assignment to the correct neurons. This study employs commercial polytrodes containing 32 electrodes (177 µm2) arranged in a dense array. This allowed us to directly compare, side-by-side, the same extracellular signals measured by modified low impedance (∼100 kΩ) microelectrodes with unmodified high impedance (∼1 MΩ) microelectrodes. We begin with an evaluation of existing protocols to lower the impedance of the electrodes. The poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) electrodeposition protocol is a simple, stable, and reliable method for decreasing the impedance of a microelectrode up to 10-fold. We next record in vivo using polytrodes that are modified in a 'chess board' pattern, such that the signal of one neuron is detected by multiple coated and non-coated electrodes. The performance of the coated and non-coated electrodes is then compared on measures of background noise and amplitude of the detected action potentials. If the proper recording system is used, then the impedance of a microelectrode within the range of standard polytrodes (∼0.1 to 2 MΩ) does not greatly affect data quality and spike sorting. This study should encourage neuroscientists to stop worrying about one more unknown.

4.
Neural Comput ; 30(7): 1750-1774, 2018 07.
Article En | MEDLINE | ID: mdl-29894653

Electrophysiology is entering the era of big data. Multiple probes, each with hundreds to thousands of individual electrodes, are now capable of simultaneously recording from many brain regions. The major challenge confronting these new technologies is transforming the raw data into physiologically meaningful signals, that is, single unit spikes. Sorting the spike events of individual neurons from a spatiotemporally dense sampling of the extracellular electric field is a problem that has attracted much attention (Rey, Pedreira, & Quian Quiroga, 2015 ; Rossant et al., 2016 ) but is still far from solved. Current methods still rely on human input and thus become unfeasible as the size of the data sets grows exponentially. Here we introduce the [Formula: see text]-student stochastic neighbor embedding (t-SNE) dimensionality reduction method (Van der Maaten & Hinton, 2008 ) as a visualization tool in the spike sorting process. t-SNE embeds the [Formula: see text]-dimensional extracellular spikes ([Formula: see text] = number of features by which each spike is decomposed) into a low- (usually two-) dimensional space. We show that such embeddings, even starting from different feature spaces, form obvious clusters of spikes that can be easily visualized and manually delineated with a high degree of precision. We propose that these clusters represent single units and test this assertion by applying our algorithm on labeled data sets from both hybrid (Rossant et al., 2016 ) and paired juxtacellular/extracellular recordings (Neto et al., 2016 ). We have released a graphical user interface (GUI) written in Python as a tool for the manual clustering of the t-SNE embedded spikes and as a tool for an informed overview and fast manual curation of results from different clustering algorithms. Furthermore, the generated visualizations offer evidence in favor of the use of probes with higher density and smaller electrodes. They also graphically demonstrate the diverse nature of the sorting problem when spikes are recorded with different methods and arise from regions with different background spiking statistics.


Action Potentials , Algorithms , Electrophysiology/methods , Neurons/physiology , Signal Processing, Computer-Assisted , Animals , Cluster Analysis , Extracellular Space , Motor Cortex/physiology , Pattern Recognition, Automated/methods , Rats , Stochastic Processes , User-Computer Interface
5.
J Neurophysiol ; 116(2): 892-903, 2016 08 01.
Article En | MEDLINE | ID: mdl-27306671

Cross-validating new methods for recording neural activity is necessary to accurately interpret and compare the signals they measure. Here we describe a procedure for precisely aligning two probes for in vivo "paired-recordings" such that the spiking activity of a single neuron is monitored with both a dense extracellular silicon polytrode and a juxtacellular micropipette. Our new method allows for efficient, reliable, and automated guidance of both probes to the same neural structure with micrometer resolution. We also describe a new dataset of paired-recordings, which is available online. We propose that our novel targeting system, and ever expanding cross-validation dataset, will be vital to the development of new algorithms for automatically detecting/sorting single-units, characterizing new electrode materials/designs, and resolving nagging questions regarding the origin and nature of extracellular neural signals.


Action Potentials/physiology , Electrophysiology/instrumentation , Microelectrodes , Nerve Net/physiology , Neurons/physiology , Silicon/chemistry , Algorithms , Animals , Datasets as Topic , Female , Male , Models, Neurological , Rats , Rats, Long-Evans , Signal Processing, Computer-Assisted
6.
Front Neuroinform ; 9: 7, 2015.
Article En | MEDLINE | ID: mdl-25904861

The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation.

7.
ACS Appl Mater Interfaces ; 6(15): 12226-34, 2014 Aug 13.
Article En | MEDLINE | ID: mdl-25020126

pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 ± 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.


Biosensing Techniques/methods , Electrochemistry/methods , Nanoparticles/chemistry , Nanotechnology/methods , Oxides/chemistry , Tungsten/chemistry , Animals , Buffers , Cell Survival , Chlorocebus aethiops , Coloring Agents/chemistry , Electrodes , Electrolytes/chemistry , Electroplating , Hydrogen-Ion Concentration , Materials Testing , Metal Nanoparticles/chemistry , Oxidation-Reduction , Surface Properties , Temperature , Vero Cells
...