Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 681671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349757

RESUMEN

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.


Asunto(s)
Aedes/inmunología , Colitis/etiología , Colitis/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Proteínas y Péptidos Salivales/inmunología , Secuencia de Aminoácidos , Animales , Biomarcadores , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Inmunomodulación , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Proteínas y Péptidos Salivales/química , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
BMC Complement Med Ther ; 20(1): 114, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303220

RESUMEN

BACKGROUND: Hancornia speciosa is usually used in Brazilian folk medicine to treat diabetes. The hypothesis of the present study is that this medicinal plant exerts beneficial effects on hyperglycemia, preventing diabetic complications. Therefore, the aim of this study was to evaluate the treatment effect of the aqueous extract of H. speciosa leaves on metabolic parameters of diabetic rats. METHODS: The H. speciosa extract (400 mg/Kg) was administered to both nondiabetic and severely diabetic female Wistar rats by gavage. The Oral Glucose Tolerance Test was performed and the area under the curve (AUC) was estimated on day 17 of pregnancy. After 21 days of treatment, the animals were anesthetized and killed to obtain organ weights. Blood samples were collected for an analysis of serum biochemical parameters. RESULTS: After treatment with the H. speciosa extract, the parameters of nondiabetic rats remained unchanged. In treated diabetic rats, glycemia, AUC, dyslipidemia parameters, and relative organ weights were decreased compared with nontreated diabetic rats. Severely diabetic rats showed decompensated hyperglycemia, polydipsia, hyperphagia and dyslipidemia. However, the aqueous extract of H. speciosa leaves decreased diabetes complications (indicating a lack of toxicity), reduced blood glucose levels, and exerced lipid-lowering effects. CONCLUSION: Based on or findings, the H. speciosa leaf extract may be a safe and promising candidate treatment for diabetes and other diseases.


Asunto(s)
Apocynaceae/química , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Animales , Biomarcadores/sangre , Brasil , Femenino , Prueba de Tolerancia a la Glucosa , Lípidos/sangre , Hojas de la Planta/química , Embarazo , Ratas , Ratas Wistar , Estreptozocina
3.
Immunology ; 158(1): 47-59, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31315156

RESUMEN

During probing and blood feeding, haematophagous mosquitoes inoculate a mixture of salivary molecules into their vertebrate hosts' skin. In addition to the anti-haemostatic and immunomodulatory activities, mosquito saliva also triggers acute inflammatory reactions, especially in sensitized hosts. Here, we characterize the oedema and the cellular infiltrate following Aedes aegypti mosquito bites in the skin of sensitized and non-sensitized BALB/c mice by flow cytometry. Ae. aegypti bites induced an increased oedema in the ears of both non-sensitized and salivary gland extract- (SGE-)sensitized mice, peaking at 6 hr and 24 hr after exposure, respectively. The quantification of the total cell number in the ears revealed that the cellular recruitment was more robust in SGE-sensitized mice than in non-sensitized mice, and the histological evaluation confirmed these findings. The immunophenotyping performed by flow cytometry revealed that mosquito bites were able to produce complex changes in cell populations present in the ears of non-sensitized and SGE-sensitized mice. When compared with steady-state ears, the leucocyte populations significantly recruited to the skin after mosquito bites in non-sensitized and sensitized mice were eosinophils, neutrophils, monocytes, inflammatory monocytes, mast cells, B-cells and CD4+ T-cells, each one with its specific kinetics. The changes in the absolute number of cells suggested two cell recruitment profiles: (i) a saliva-dependent migration; and (ii) a migration dependent on the immune status of the host. These findings suggest that mosquito bites influence the skin microenvironment by inducing differential cell migration, which is dependent on the degree of host sensitization to salivary molecules.


Asunto(s)
Aedes/inmunología , Quimiotaxis de Leucocito , Edema/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Leucocitos/inmunología , Mastocitos/inmunología , Saliva/inmunología , Piel/inmunología , Animales , Microambiente Celular , Modelos Animales de Enfermedad , Femenino , Cinética , Masculino , Ratones Endogámicos BALB C , Infiltración Neutrófila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...