Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240165

RESUMEN

When an epidemic started in the Chinese city of Wuhan in December 2019, coronavirus was identified as the cause. Infection by the virus occurs through the interaction of viral S protein with the hosts' angiotensin-converting enzyme 2. By leveraging resources such as the DrugBank database and bioinformatics techniques, ligands with potential activity against the SARS-CoV-2 spike protein were designed and identified in this investigation. The FTMap server and the Molegro software were used to determine the active site of the Spike-ACE2 protein's crystal structure. Virtual screening was performed using a pharmacophore model obtained from antiparasitic drugs, obtaining 2000 molecules from molport®. The ADME/Tox profiles were used to identify the most promising compounds with desirable drug characteristics. The binding affinity investigation was then conducted with selected candidates. A molecular docking study showed five structures with better binding affinity than hydroxychloroquine. Ligand_003 showed a binding affinity of -8.645 kcal·mol-1, which was considered an optimal value for the study. The values presented by ligand_033, ligand_013, ligand_044, and ligand_080 meet the profile of novel drugs. To choose compounds with favorable potential for synthesis, synthetic accessibility studies and similarity analyses were carried out. Molecular dynamics and theoretical IC50 values (ranging from 0.459 to 2.371 µM) demonstrate that these candidates are promising for further tests. Chemical descriptors showed that the candidates had strong molecule stability. Theoretical analyses here show that these molecules have potential as SARS-CoV-2 antivirals and therefore warrant further investigation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Enzima Convertidora de Angiotensina 2 , Ligandos , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química , Unión Proteica
2.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296371

RESUMEN

The Aedes aegypti mosquito is the main hematophagous vector responsible for arbovirus transmission in Brazil. The disruption of A. aegypti hematophagy remains one of the most efficient and least toxic methods against these diseases and, therefore, efforts in the research of new chemical entities with repellent activity have advanced due to the elucidation of the functionality of the olfactory receptors and the behavior of mosquitoes. With the growing interest of the pharmaceutical and cosmetic industries in the development of chemical entities with repellent activity, computational studies (e.g., virtual screening and molecular modeling) are a way to prioritize potential modulators with stereoelectronic characteristics (e.g., pharmacophore models) and binding affinity to the AaegOBP1 binding site (e.g., molecular docking) at a lower computational cost. Thus, pharmacophore- and docking-based virtual screening was employed to prioritize compounds from Sigma-Aldrich® (n = 126,851) and biogenic databases (n = 8766). In addition, molecular dynamics (MD) was performed to prioritize the most potential potent compounds compared to DEET according to free binding energy calculations. Two compounds showed adequate stereoelectronic requirements (QFIT > 81.53), AaegOBP1 binding site score (Score > 42.0), volatility and non-toxic properties and better binding free energy value (∆G < −24.13 kcal/mol) compared to DEET ((N,N-diethyl-meta-toluamide)) (∆G = −24.13 kcal/mol).


Asunto(s)
Aedes , Repelentes de Insectos , Receptores Odorantes , Animales , Receptores Odorantes/metabolismo , DEET/química , Simulación del Acoplamiento Molecular , Mosquitos Vectores , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Preparaciones Farmacéuticas/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897792

RESUMEN

Aedes aegypti is the main vector that transmits viral diseases such as dengue, hemorrhagic dengue, urban yellow fever, zika, and chikungunya. Worldwide, many cases of dengue have been reported in recent years, showing significant growth. The best way to manage diseases transmitted by Aedes aegypti is to control the vector with insecticides, which have already been shown to be toxic to humans; moreover, insects have developed resistance. Thus, the development of new insecticides is considered an emergency. One way to achieve this goal is to apply computational methods based on ligands and target information. In this study, sixteen compounds with acceptable insecticidal activities, with 100% larvicidal activity at low concentrations (2.0 to 0.001 mg·L−1), were selected from the literature. These compounds were used to build up and validate pharmacophore models. Pharmacophore model 6 (AUC = 0.78; BEDROC = 0.6) was used to filter 4793 compounds from the subset of lead-like compounds from the ZINC database; 4142 compounds (dG < 0 kcal/mol) were then aligned to the active site of the juvenile hormone receptor Aedes aegypti (PDB: 5V13), 2240 compounds (LE < −0.40 kcal/mol) were prioritized for molecular docking from the construction of a chitin deacetylase model of Aedes aegypti by the homology modeling of the Bombyx mori species (PDB: 5ZNT), which aligned 1959 compounds (dG < 0 kcal/mol), and 20 compounds (LE < −0.4 kcal/mol) were predicted for pharmacokinetic and toxicological prediction in silico (Preadmet, SwissADMET, and eMolTox programs). Finally, the theoretical routes of compounds M01, M02, M03, M04, and M05 were proposed. Compounds M01−M05 were selected, showing significant differences in pharmacokinetic and toxicological parameters in relation to positive controls and interaction with catalytic residues among key protein sites reported in the literature. For this reason, the molecules investigated here are dual inhibitors of the enzymes chitin synthase and juvenile hormonal protein from insects and humans, characterizing them as potential insecticides against the Aedes aegypti mosquito.


Asunto(s)
Aedes , Dengue , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Biología Computacional , Inhibidores de Crecimiento , Humanos , Insectos , Insecticidas/química , Insecticidas/farmacología , Larva , Simulación del Acoplamiento Molecular , Mosquitos Vectores
4.
Molecules ; 25(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164183

RESUMEN

Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.


Asunto(s)
Receptores de Adenosina A2/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa
5.
Molecules ; 24(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991684

RESUMEN

Inflammation is a complex reaction involving cellular and molecular components and an unspecific response to a specific aggression. The use of scientific and technological innovations as a research tool combining multidisciplinary knowledge in informatics, biotechnology, chemistry and biology are essential for optimizing time and reducing costs in the drug design. Thus, the integration of these in silico techniques makes it possible to search for new anti-inflammatory drugs with better pharmacokinetic and toxicological profiles compared to commercially used drugs. This in silico study evaluated the anti-inflammatory potential of two benzoylpropionic acid derivatives (MBPA and DHBPA) using molecular docking and their thermodynamic profiles by molecular dynamics, in addition to predicting oral bioavailability, bioactivity and toxicity. In accordance to our predictions the derivatives proposed here had the potential capacity for COX-2 inhibition in the human and mice enzyme, due to containing similar interactions with the control compound (ibuprofen). Ibuprofen showed toxic predictions of hepatotoxicity (in human, mouse and rat; toxicophoric group 2-arylacetic or 3-arylpropionic acid) and irritation of the gastrointestinal tract (in human, mouse and rat; toxicophoric group alpha-substituted propionic acid or ester) confirming the literature data, as well as the efficiency of the DEREK 10.0.2 program. Moreover, the proposed compounds are predicted to have a good oral bioavailability profile and low toxicity (LD50 < 700 mg/kg) and safety when compared to the commercial compound. Therefore, future studies are necessary to confirm the anti-inflammatory potential of these compounds.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Benzoatos/química , Simulación por Computador , Inhibidores de la Ciclooxigenasa 2/química , Ciclooxigenasa 2/química , Ibuprofeno/química , Simulación del Acoplamiento Molecular , Propionatos/química , Animales , Humanos , Ratones , Ratas
6.
Molecules ; 23(2)2018 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-29463017

RESUMEN

The Protein Kinase Receptor type 2 (RIPK2) plays an important role in the pathogenesis of inflammatory diseases; it signals downstream of the NOD1 and NOD2 intracellular sensors and promotes a productive inflammatory response. However, excessive NOD2 signaling has been associated with various diseases, including sarcoidosis and inflammatory arthritis; the pharmacological inhibition of RIPK2 is an affinity strategy that demonstrates an increased expression of pro-inflammatory secretion activity. In this study, a pharmacophoric model based on the crystallographic pose of ponatinib, a potent RIPK2 inhibitor, and 30 other ones selected from the BindingDB repository database, was built. Compounds were selected based on the available ZINC compounds database and in silico predictions of their pharmacokinetic, toxicity and potential biological activity. Molecular docking was performed to identify the probable interactions of the compounds as well as their binding affinity with RIPK2. The compounds were analyzed to ponatinib and WEHI-345, which also used as a control. At least one of the compounds exhibited suitable pharmacokinetic properties, low toxicity and an interesting binding affinity and high fitness compared with the crystallographic pose of WEHI-345 in complex with RIPK2. This compound also possessed suitable synthetic accessibility, rendering it a potential and very promising RIPK2 inhibitor to be further investigated in regards to different diseases, particularly inflammatory ones.


Asunto(s)
Imidazoles/química , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Piridazinas/química , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Cristalografía por Rayos X , Humanos , Imidazoles/uso terapéutico , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridazinas/uso terapéutico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/química , Transducción de Señal/efectos de los fármacos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA