Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(44): e2311057120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883440

RESUMEN

The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.


Asunto(s)
Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Hierro/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
2.
J Am Chem Soc ; 141(14): 5753-5765, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30879301

RESUMEN

Apd1, a cytosolic yeast protein, and Aim32, its counterpart in the mitochondrial matrix, have a C-terminal thioredoxin-like ferredoxin (TLF) domain and a widely divergent N-terminal domain. These proteins are found in bacteria, plants, fungi, and unicellular pathogenic eukaryotes but not in Metazoa. Our chemogenetic experiments demonstrate that the highly conserved cysteine and histidine residues within the C-X8-C-X24-75-H-X-G-G-H motif of the TLF domain of Apd1 and Aim32 proteins are essential for viability of yeast cells upon treatment with the redox mediators gallobenzophenone or pyrogallol, respectively. UV-vis, EPR, and Mössbauer spectroscopy of purified wild-type Apd1 and three His to Cys variants demonstrated that Cys207 and Cys216 are the ligands of the ferric ion, and His255 and His259 are the ligands of the reducible iron ion of the [2Fe-2S]2+/1+ cluster. The [2Fe-2S] center of Apd1 ( Em,7 = -164 ± 5 mV, p Kox1,2 = 7.9 ± 0.1 and 9.7 ± 0.1) differs from both dioxygenase ( Em,7 ≈ -150 mV, p Kox1,2 = 9.8 and 11.5) and cytochrome bc1/ b6 f Rieske clusters ( Em,7 ≈ +300 mV, p Kox1,2= 7.7 and 9.8). Apd1 and its engineered variants represent an unprecedented flexible system for which a stable [2Fe-2S] cluster with two histidine ligands, (two different) single histidine ligands, or only cysteinyl ligands is possible in the same protein fold. Our results define a remarkable example of convergent evolution of the [2Fe-2S] cluster containing proteins with bishistidinyl coordination.


Asunto(s)
Ferredoxinas/química , Ferredoxinas/metabolismo , Histidina , Transporte de Electrón , Dominios Proteicos
3.
PLoS Biol ; 16(1): e2003892, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357351

RESUMEN

Hypersaline environments pose major challenges to their microbial residents. Microorganisms have to cope with increased osmotic pressure and low water activity and therefore require specific adaptation mechanisms. Although mechanisms have already been thoroughly investigated in the green alga Dunaliella salina and some halophilic yeasts, strategies for osmoadaptation in other protistan groups (especially heterotrophs) are neither as well known nor as deeply investigated as for their prokaryotic counterpart. This is not only due to the recent awareness of the high protistan diversity and ecological relevance in hypersaline systems, but also due to methodological shortcomings. We provide the first experimental study on haloadaptation in heterotrophic microeukaryotes, using the halophilic ciliate Schmidingerothrix salinarum as a model organism. We established three approaches to investigate fundamental adaptation strategies known from prokaryotes. First, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used for the detection, identification, and quantification of intracellular compatible solutes. Second, ion-imaging with cation-specific fluorescent dyes was employed to analyze changes in the relative ion concentrations in intact cells. Third, the effect of salt concentrations on the catalytic performance of S. salinarum malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH) was determined. 1H-NMR spectroscopy identified glycine betaine (GB) and ectoine (Ect) as the main compatible solutes in S. salinarum. Moreover, a significant positive correlation of intracellular GB and Ect concentrations and external salinity was observed. The addition of exogenous GB, Ect, and choline (Ch) stimulated the cell growth notably, indicating that S. salinarum accumulates the solutes from the external medium. Addition of external 13C2-Ch resulted in conversion to 13C2-GB, indicating biosynthesis of GB from Ch. An increase of external salinity up to 21% did not result in an increase in cytoplasmic sodium concentration in S. salinarum. This, together with the decrease in the catalytic activities of MDH and ICDH at high salt concentration, demonstrates that S. salinarum employs the salt-out strategy for haloadaptation.


Asunto(s)
Cilióforos/metabolismo , Cilióforos/fisiología , Tolerancia a la Sal/fisiología , Adaptación Fisiológica/fisiología , Aminoácidos Diaminos/biosíntesis , Betaína/metabolismo , Evolución Biológica , Catálisis , Colina , Citoplasma , Evolución Molecular , Isocitrato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética , Malato Deshidrogenasa/metabolismo , Presión Osmótica , Células Procariotas , Cloruro de Sodio
4.
Biochem J ; 473(14): 2073-85, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27166425

RESUMEN

The cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery comprises 11 essential components and matures Fe-S proteins involved in translation and genome maintenance. Maturation is initiated by the electron transfer chain NADPH-diflavin reductase Tah18-Fe-S protein Dre2 that facilitates the de novo assembly of a [4Fe-4S] cluster on the scaffold complex Cfd1-Nbp35. Tah18-Dre2 also play a critical role in the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase. Dre2 contains eight conserved cysteine residues as potential co-ordinating ligands for Fe-S clusters but their functional importance and the type of bound clusters is unclear. In the present study, we use a combination of mutagenesis, cell biological and biochemical as well as UV-visible, EPR and Mössbauer spectroscopic approaches to show that the yeast Dre2 cysteine residues Cys(252), Cys(263), Cys(266) and Cys(268) (motif I) bind a [2Fe-2S] cluster, whereas cysteine residues Cys(311), Cys(314), Cys(322) and Cys(325) (motif II) co-ordinate a [4Fe-4S] cluster. All of these residues with the exception of Cys(252) are essential for cell viability, cytosolic Fe-S protein activity and in vivo (55)Fe-S cluster incorporation. The N-terminal methyltransferase-like domain of Dre2 is important for proper Fe-S cluster assembly at motifs I and II, which occurs in an interdependent fashion. Our findings further resolve why recombinant Dre2 from Arabidopsis, Trypanosoma or humans has previously been isolated with a single [2Fe-2S] instead of native [2Fe-2S] plus [4Fe-4S] clusters. In the presence of oxygen, the motif I-bound [2Fe-2S] cluster is labile and the motif II-bound [4Fe-4S] cluster is readily converted into a [2Fe-2S] cluster.


Asunto(s)
Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Cisteína/química , Cisteína/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutagénesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectroscopía de Mossbauer
5.
Trends Cell Biol ; 24(5): 303-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24314740

RESUMEN

Eukaryotic cells contain numerous cytosolic and nuclear iron-sulfur (Fe/S) proteins that perform key functions in metabolic catalysis, iron regulation, protein translation, DNA synthesis, and DNA repair. Synthesis of Fe/S clusters and their insertion into apoproteins are essential for viability and are conserved in eukaryotes. The process is catalyzed in two major steps by the CIA (cytosolic iron-sulfur protein assembly) machinery encompassing nine known proteins. First, a [4Fe-4S] cluster is assembled on a scaffold complex. This step requires a sulfur-containing compound from mitochondria and reducing equivalents from an electron transfer chain. Second, the Fe/S cluster is transferred from the scaffold to specific apoproteins by the CIA targeting complex. This review summarizes our molecular knowledge on CIA protein function during the assembly process.


Asunto(s)
Proteínas Hierro-Azufre/biosíntesis , Animales , Sitios de Unión , Citosol/metabolismo , Inestabilidad Genómica , Humanos , Proteínas Hierro-Azufre/fisiología , Mitocondrias/metabolismo , Chaperonas Moleculares/fisiología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/fisiología , Biosíntesis de Proteínas , Pliegue de Proteína
6.
Philos Trans R Soc Lond B Biol Sci ; 368(1622): 20120259, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23754812

RESUMEN

The assembly of iron-sulfur (Fe-S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe-S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe-4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe-S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe-S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe-S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Hierro-Azufre/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mitocondrias/metabolismo , Plastidios/metabolismo
7.
Science ; 337(6091): 195-9, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22678362

RESUMEN

Instability of the nuclear genome is a hallmark of cancer and aging. MMS19 protein has been linked to maintenance of genomic integrity, but the molecular basis of this connection is unknown. Here, we identify MMS19 as a member of the cytosolic iron-sulfur protein assembly (CIA) machinery. MMS19 functions as part of the CIA targeting complex that specifically interacts with and facilitates iron-sulfur cluster insertion into apoproteins involved in methionine biosynthesis, DNA replication, DNA repair, and telomere maintenance. MMS19 thus serves as an adapter between early-acting CIA components and a subset of cellular iron-sulfur proteins. The function of MMS19 in the maturation of crucial components of DNA metabolism may explain the sensitivity of MMS19 mutants to DNA damage and the presence of extended telomeres.


Asunto(s)
ADN de Hongos/metabolismo , ADN/metabolismo , Inestabilidad Genómica , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , Células HeLa , Humanos , Inmunoprecipitación , Hierro/metabolismo , Metalochaperonas/metabolismo , Metaloproteínas , Metionina/biosíntesis , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Interferencia de ARN , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
8.
J Biol Chem ; 287(15): 12365-78, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22362766

RESUMEN

The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Complejos de Coordinación , Cisteína/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Hierro , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Azufre
9.
Nat Chem Biol ; 8(1): 125-32, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22119860

RESUMEN

The eukaryotic replicative DNA polymerases (Pol α, δ and ɛ) and the major DNA mutagenesis enzyme Pol ζ contain two conserved cysteine-rich metal-binding motifs (CysA and CysB) in the C-terminal domain (CTD) of their catalytic subunits. Here we demonstrate by in vivo and in vitro approaches the presence of an essential [4Fe-4S] cluster in the CysB motif of all four yeast B-family DNA polymerases. Loss of the [4Fe-4S] cofactor by cysteine ligand mutagenesis in Pol3 destabilized the CTD and abrogated interaction with the Pol31 and Pol32 subunits. Reciprocally, overexpression of accessory subunits increased the amount of the CTD-bound Fe-S cluster. This implies an important physiological role of the Fe-S cluster in polymerase complex stabilization. Further, we demonstrate that the Zn-binding CysA motif is required for PCNA-mediated Pol δ processivity. Together, our findings show that the function of eukaryotic replicative DNA polymerases crucially depends on different metallocenters for accessory subunit recruitment and replisome stability.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Dominio Catalítico , ADN Polimerasa Dirigida por ADN/química , Hierro/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Azufre/metabolismo
10.
Nat Chem Biol ; 6(10): 758-65, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20802492

RESUMEN

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1-Ciapin1 proteins can functionally replace yeast Tah18-Dre2.


Asunto(s)
Citosol/metabolismo , Electrones , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/química , Transporte de Electrón , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/metabolismo , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferasas/metabolismo , Factores de Tiempo
11.
J Bacteriol ; 192(6): 1643-51, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20097860

RESUMEN

Bacteria use three distinct systems for iron-sulfur (Fe/S) cluster biogenesis: the ISC, SUF, and NIF machineries. The ISC and SUF systems are widely distributed, and many bacteria possess both of them. In Escherichia coli, ISC is the major and constitutive system, whereas SUF is induced under iron starvation and/or oxidative stress. Genomic analysis of the Fe/S cluster biosynthesis genes in Bacillus subtilis suggests that this bacterium's genome encodes only a SUF system consisting of a sufCDSUB gene cluster and a distant sufA gene. Mutant analysis of the putative Fe/S scaffold genes sufU and sufA revealed that sufU is essential for growth under minimal standard conditions, but not sufA. The drastic growth retardation of a conditional mutant depleted of SufU was coupled with a severe reduction of aconitase and succinate dehydrogenase activities in total-cell lysates, suggesting a crucial function of SufU in Fe/S protein biogenesis. Recombinant SufU was devoid of Fe/S clusters after aerobic purification. Upon in vitro reconstitution, SufU bound an Fe/S cluster with up to approximately 1.5 Fe and S per monomer. The assembled Fe/S cluster could be transferred from SufU to the apo form of isopropylmalate isomerase Leu1, rapidly forming catalytically active [4Fe-4S]-containing holo-enzyme. In contrast to native SufU, its D43A variant carried a Fe/S cluster after aerobic purification, indicating that the cluster is stabilized by this mutation. Further, we show that apo-SufU is an activator of the cysteine desulfurase SufS by enhancing its activity about 40-fold in vitro. SufS-dependent formation of holo-SufU suggests that SufU functions as an Fe/S cluster scaffold protein tightly cooperating with the SufS cysteine desulfurase.


Asunto(s)
Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Hierro-Azufre/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas , Liasas de Carbono-Azufre/metabolismo , Clonación Molecular , Activación Enzimática , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Isomerasas/metabolismo , Azufre/metabolismo
12.
Biochem J ; 425(1): 207-14, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19817716

RESUMEN

Oxygen-evolving chloroplasts possess their own iron-sulfur cluster assembly proteins including members of the SUF (sulfur mobilization) and the NFU family. Recently, the chloroplast protein HCF101 (high chlorophyll fluorescence 101) has been shown to be essential for the accumulation of the membrane complex Photosystem I and the soluble ferredoxin-thioredoxin reductases, both containing [4Fe-4S] clusters. The protein belongs to the FSC-NTPase ([4Fe-4S]-cluster-containing P-loop NTPase) superfamily, several members of which play a crucial role in Fe/S cluster biosynthesis. Although the C-terminal ISC-binding site, conserved in other members of the FSC-NTPase family, is not present in chloroplast HCF101 homologues using Mössbauer and EPR spectroscopy, we provide evidence that HCF101 binds a [4Fe-4S] cluster. 55Fe incorporation studies of mitochondrially targeted HCF101 in Saccharomyces cerevisiae confirmed the assembly of an Fe/S cluster in HCF101 in an Nfs1-dependent manner. Site-directed mutagenesis identified three HCF101-specific cysteine residues required for assembly and/or stability of the cluster. We further demonstrate that the reconstituted cluster is transiently bound and can be transferred from HCF101 to a [4Fe-4S] apoprotein. Together, our findings suggest that HCF101 may serve as a chloroplast scaffold protein that specifically assembles [4Fe-4S] clusters and transfers them to the chloroplast membrane and soluble target proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Escherichia coli/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidorreductasas/genética , Unión Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrofotometría/métodos
13.
Mol Cell Biol ; 29(22): 6059-73, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19752196

RESUMEN

Respiratory complex I (NADH:ubiquinone oxidoreductase) is a large mitochondrial inner membrane enzyme consisting of 45 subunits and 8 iron-sulfur (Fe/S) clusters. While complex I dysfunction is the most common reason for mitochondrial diseases, the assembly of complex I and its Fe/S cofactors remains elusive. Here, we identify the human mitochondrial P-loop NTPase, designated huInd1, that is critically required for the assembly of complex I. huInd1 can bind an Fe/S cluster via a conserved CXXC motif in a labile fashion. Knockdown of huInd1 in HeLa cells by RNA interference technology led to strong decreases in complex I protein and activity levels, remodeling of respiratory supercomplexes, and alteration of mitochondrial morphology. In addition, huInd1 depletion resulted in massive decreases in several subunits (NDUFS1, NDUFV1, NDUFS3, and NDUFA13) of the peripheral arm of complex I, with the concomitant appearance of a 450-kDa subcomplex representing part of the membrane arm. By a novel radiolabeling technique, the amount of iron associated with complex I was also shown to reflect the dependence of this enzyme on huInd1 for assembly. Together, these data identify huInd1 as a new assembly factor for human respiratory complex I with a possible role in the delivery of one or more Fe/S clusters to complex I subunits.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Hierro-Azufre/metabolismo , Nucleósido-Trifosfatasa/metabolismo , Secuencias de Aminoácidos , Animales , Bovinos , Respiración de la Célula , Secuencia Conservada , Cisteína , Células HeLa , Humanos , Ácido Láctico/biosíntesis , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/deficiencia , Unión Proteica , Subunidades de Proteína/metabolismo , Interferencia de ARN
14.
Nat Protoc ; 4(5): 753-66, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19528951

RESUMEN

Iron-sulfur (Fe/S) proteins play crucial roles in living cells by participating in enzyme catalysis, electron transfer and the regulation of gene expression. The biosynthesis of the inorganic Fe/S centers and their insertion into apoproteins require complex cellular machinery located in the mitochondria (Fe/S cluster (ISC) assembly machinery systems) and cytosol (cytosolic Fe/S protein assembly (CIA) systems). Functional defects in Fe/S proteins or their biogenesis components lead to human diseases underscoring the functional importance of these inorganic cofactors for life. In this protocol, we describe currently available methods to follow the activity and de novo biogenesis of Fe/S proteins in eukaryotic cells. The assay systems are useful to follow Fe/S protein maturation in different cellular compartments, identify novel Fe/S proteins and their biogenesis factors, investigate the molecular mechanisms underlying the maturation process in vivo and analyze the effects of genetic mutations in Fe/S protein-related genes. Comprehensive analysis of one biogenesis component or target Fe/S protein takes about 10 d.


Asunto(s)
Proteínas Hierro-Azufre/análisis , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Western Blotting , Técnicas de Cultivo de Célula , Núcleo Celular/metabolismo , Citosol/metabolismo , Inmunoprecipitación , Radioisótopos de Hierro , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/ultraestructura , Plásmidos/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/biosíntesis , Transformación Genética
15.
J Biol Chem ; 283(51): 35797-804, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18957412

RESUMEN

In photosynthetic eukaryotes assembly components of iron-sulfur (Fe-S) cofactors have been studied in plastids and mitochondria, but how cytosolic and nuclear Fe-S cluster proteins are assembled is not known. We have characterized a plant P loop NTPase with sequence similarity to Nbp35 of yeast and mammals, a protein of the cytosolic Cfd1-Nbp35 complex mediating Fe-S cluster assembly. Genome analysis revealed that NBP35 is conserved in the green lineage but that CFD1 is absent. Moreover, plant and algal NBP35 proteins lack the characteristic CXXC motif in the C terminus, thought to be required for Fe-S cluster binding. Nevertheless, chemical reconstitution and spectroscopy showed that Arabidopsis (At) NBP35 bound a [4Fe-4S] cluster in the C terminus as well as a stable [4Fe-4S] cluster in the N terminus. Holo-AtNBP35 was able to transfer an Fe-S cluster to an apoprotein in vitro. When expressed in yeast, AtNBP35 bound 55Fe dependent on the cysteine desulfurase Nfs1 and was able to partially rescue the growth of a cfd1 mutant but not of an nbp35 mutant. The AtNBP35 gene is constitutively expressed in planta, and its disruption was associated with an arrest of embryo development. These results show that despite considerable divergence from the yeast Cfd1-Nbp35 Fe-S scaffold complex, AtNBP35 has retained similar Fe-S cluster binding and transfer properties and performs an essential function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Secuencias de Aminoácidos/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Proteínas Portadoras/genética , Genoma de Planta/fisiología , Proteínas Mitocondriales , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Sulfurtransferasas
16.
Biochemistry ; 47(31): 8195-202, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18616280

RESUMEN

The metabolism of iron-sulfur ([Fe-S]) clusters requires a complex set of machinery that is still being defined. Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. ApbC is a 40.8 kDa homodimeric ATPase and as purified contains little iron and no acid-labile sulfide. An [Fe-S] cluster was reconstituted on ApbC, generating a protein that bound 2 mol of Fe and 2 mol of S (2-) per ApbC monomer and had a UV-visible absorption spectrum similar to known [4Fe-4S] cluster proteins. Holo-ApbC could rapidly and effectively activate Saccharomyces cerevisiae apo-isopropylmalate isolomerase (Leu1) in vitro, a process known to require the transfer of a [4Fe-4S] cluster. Maximum activation was achieved with 2 mol of ApbC per 1 mol of apo-Leu1. This article describes the first biochemical activity of ApbC in the context of [Fe-S] cluster metabolism. The data herein support a model in which ApbC coordinates an [4Fe-4S] cluster across its dimer interface and can transfer this cluster to an apoprotein acting as an [Fe-S] cluster scaffold protein, a function recently deduced for its eukaryotic homologues.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Hierro/química , Isomerasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Azufre/química
17.
Mol Cell Biol ; 28(17): 5517-28, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18573874

RESUMEN

The maturation of cytosolic iron-sulfur (Fe/S) proteins in mammalian cells requires components of the mitochondrial iron-sulfur cluster assembly and export machineries. Little is known about the cytosolic components that may facilitate the assembly process. Here, we identified the cytosolic soluble P-loop NTPase termed huNbp35 (also known as Nubp1) as an Fe/S protein, and we defined its role in the maturation of Fe/S proteins in HeLa cells. Depletion of huNbp35 by RNA interference decreased cell growth considerably, indicating its essential function. The deficiency in huNbp35 was associated with an impaired maturation of the cytosolic Fe/S proteins glutamine phosphoribosylpyrophosphate amidotransferase and iron regulatory protein 1 (IRP1), while mitochondrial Fe/S proteins remained intact. Consequently, huNbp35 is specifically involved in the formation of extramitochondrial Fe/S proteins. The impaired maturation of IRP1 upon huNbp35 depletion had profound consequences for cellular iron metabolism, leading to decreased cellular H-ferritin, increased transferrin receptor levels, and higher transferrin uptake. These properties clearly distinguished huNbp35 from its yeast counterpart Nbp35, which is essential for cytosolic-nuclear Fe/S protein assembly but plays no role in iron regulation. huNbp35 formed a complex with its close homologue huCfd1 (also known as Nubp2) in vivo, suggesting the existence of a heteromeric P-loop NTPase complex that is required for both cytosolic Fe/S protein assembly and cellular iron homeostasis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citosol/metabolismo , Homeostasis , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Aconitato Hidratasa/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Proliferación Celular , Citosol/enzimología , Ferritinas/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Células HeLa , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Biosíntesis de Proteínas , Interferencia de ARN , Receptores de Transferrina/biosíntesis , Elementos de Respuesta
18.
EMBO J ; 27(12): 1736-46, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18497740

RESUMEN

NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron-sulphur (Fe-S) clusters. Little is known about the assembly of complex I and its Fe-S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe-S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe-S clusters showed that only a minor fraction (approximately 20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe-4S] cluster that was readily transferred to an acceptor Fe-S protein. Our data suggest that Ind1 facilitates the assembly of Fe-S cofactors and subunits of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Yarrowia/metabolismo , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Eliminación de Gen , Hierro/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Filogenia , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Structure ; 15(10): 1246-57, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17937914

RESUMEN

The WD40-repeat protein Cia1 is an essential, conserved member of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA) machinery in eukaryotes. Here, we report the crystal structure of Saccharomyces cerevisiae Cia1 to 1.7 A resolution. The structure folds into a beta propeller with seven blades pseudo symmetrically arranged around a central axis. Structure-based sequence alignment of Cia1 proteins shows that the WD40 propeller core elements are highly conserved. Site-directed mutagenesis of amino acid residues in loop regions with high solvent accessibility identified that the conserved top surface residue R127 performs a critical function: the R127 mutant cells grew slowly and were impaired in cytosolic Fe/S protein assembly. Human Ciao1, which reportedly interacts with the Wilms' tumor suppressor, WT1, is structurally similar to yeast Cia1. We show that Ciao1 can functionally replace Cia1 and support cytosolic Fe/S protein biogenesis. Hence, our structural and biochemical studies indicate the conservation of Cia1 function in eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Humanos , Proteínas Hierro-Azufre/química , Metalochaperonas , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad
20.
Nat Chem Biol ; 3(5): 278-86, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17401378

RESUMEN

Biogenesis of iron-sulfur ([Fe-S]) proteins in eukaryotes requires the function of complex proteinaceous machineries in both mitochondria and cytosol. In contrast to the mitochondrial pathway, little is known about [Fe-S] protein assembly in the cytosol. So far, four highly conserved proteins (Cfd1, Nbp35, Nar1 and Cia1) have been identified as members of the cytosolic [Fe-S] protein assembly machinery, but their molecular function is unresolved. Using in vivo and in vitro approaches, we found that the soluble P-loop NTPases Cfd1 and Nbp35 form a complex and bind up to three [4Fe-4S] clusters, one at the N terminus of Nbp35 and one each at a new C-terminal cysteine-rich motif present in both proteins. These labile [Fe-S] clusters can be rapidly transferred and incorporated into target [Fe-S] apoproteins in a Nar1- and Cia1-dependent fashion. Our data suggest that the Cfd1-Nbp35 complex functions as a novel scaffold for [Fe-S] cluster assembly in the eukaryotic cytosol.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citosol/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Apoproteínas/metabolismo , Activación Enzimática , Proteínas de Unión al GTP/genética , Proteínas Hierro-Azufre/genética , Isomerasas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...