Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Phys Chem Lett ; 15(24): 6325-6333, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856977

RESUMEN

Accurate simulation models for water interactions with graphene and graphite are important for nanofluidic applications, but existing force fields produce widely varying contact angles. Our extensive review of the experimental literature reveals extreme variation among reported values of graphene-water contact angles and a clustering of graphite-water contact angles into groups of freshly exfoliated (60° ± 13°) and not-freshly exfoliated graphite surfaces. The carbon-oxygen dispersion energy for a classical force field is optimized with respect to this 60° graphite-water contact angle in the infinite-force-cutoff limit, which in turn yields a contact angle for unsupported graphene of 80°, in agreement with the mean of the experimental results. Interaction force fields for finite cutoffs are also derived. A method for calculating contact angles from pressure tensors of planar equilibrium simulations that is ideally suited to graphite and graphene surfaces is introduced. Our methodology is widely applicable to any liquid-surface combination.

2.
Nat Commun ; 15(1): 3761, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704367

RESUMEN

Molecular isomerization kinetics in liquid solvent depends on a complex interplay between the solvent friction acting on the molecule, internal dissipation effects (also known as internal friction), the viscosity of the solvent, and the dihedral free energy profile. Due to the absence of accurate techniques to directly evaluate isomerization friction, it has not been possible to explore these relationships in full. By combining extensive molecular dynamics simulations with friction memory-kernel extraction techniques we consider a variety of small, isomerising molecules under a range of different viscogenic conditions and directly evaluate the viscosity dependence of the friction acting on a rotating dihedral. We reveal that the influence of different viscogenic media on isomerization kinetics can be dramatically different, even when measured at the same viscosity. This is due to the dynamic solute-solvent coupling, mediated by time-dependent friction memory kernels. We also show that deviations from the linear dependence of isomerization rates on solvent viscosity, which are often simply attributed to internal friction effects, are due to the simultaneous violation of two fundamental relationships: the Stokes-Einstein relation and the overdamped Kramers prediction for the barrier-crossing rate, both of which require explicit knowledge of friction.

3.
Langmuir ; 40(15): 7896-7906, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38578930

RESUMEN

Polar surfaces in water typically repel each other at close separations, even if they are charge-neutral. This so-called hydration repulsion balances the van der Waals attraction and gives rise to a stable nanometric water layer between the polar surfaces. The resulting hydration water layer is crucial for the properties of concentrated suspensions of lipid membranes and hydrophilic particles in biology and technology, but its origin is unclear. It has been suggested that surface-induced molecular water structuring is responsible for the hydration repulsion, but a quantitative proof of this water-structuring hypothesis is missing. To gain an understanding of the mechanism causing hydration repulsion, we perform molecular simulations of different planar polar surfaces in water. Our simulated hydration forces between phospholipid bilayers agree perfectly with experiments, validating the simulation model and methods. For the comparison with theory, it is important to split the simulated total surface interaction force into a direct contribution from surface-surface molecular interactions and an indirect water-mediated contribution. We find the indirect hydration force and the structural water-ordering profiles from the simulations to be in perfect agreement with the predictions from theoretical models that account for the surface-induced water ordering, which strongly supports the water-structuring hypothesis for the hydration force. However, the comparison between the simulations for polar surfaces with different headgroup architectures reveals significantly different decay lengths of the indirect water-mediated hydration-force, which for laterally homogeneous water structuring would imply different bulk-water properties. We conclude that laterally inhomogeneous water ordering, induced by laterally inhomogeneous surface structures, shapes the hydration repulsion between polar surfaces in a decisive manner. Thus, the indirect water-mediated part of the hydration repulsion is caused by surface-induced water structuring but is surface-specific and thus nonuniversal.

4.
J Chem Theory Comput ; 20(8): 3061-3068, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38603471

RESUMEN

Memory effects emerge as a fundamental consequence of dimensionality reduction when low-dimensional observables are used to describe the dynamics of complex many-body systems. In the context of molecular dynamics (MD) data analysis, accounting for memory effects using the framework of the generalized Langevin equation (GLE) has proven efficient, accurate, and insightful, particularly when working with high-resolution time series data. However, in experimental systems, high-resolution data are often unavailable, raising questions about the impact of the data resolution on the estimated GLE parameters. This study demonstrates that direct memory extraction from time series data remains accurate when the discretization time is below the memory time. To obtain memory functions reliably, even when the discretization time exceeds the memory time, we introduce a Gaussian Process Optimization (GPO) scheme. This scheme minimizes the deviation of discretized two-point correlation functions between time series data and GLE simulations and is able to estimate accurate memory kernels as long as the discretization time stays below the longest time scale in the data, typically the barrier crossing time.

5.
Nano Lett ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591912

RESUMEN

Deviations between macrorheological and particle-based microrheological measurements are often considered to be a nuisance and neglected. We study aqueous poly(ethylene oxide) (PEO) hydrogels for varying PEO concentrations and chain lengths that contain microscopic tracer particles and show that these deviations reveal the nanoscopic viscoelastic properties of the particle-hydrogel interface. Based on the transient Stokes equation, we first demonstrate that the deviations are not due to finite particle radius, compressibility, or surface-slip effects. Small-angle neutron scattering rules out hydrogel heterogeneities. Instead, we show that a generalized Stokes-Einstein relation, accounting for an interfacial shell around tracers with viscoelastic properties that deviate from bulk, consistently explains our macrorheological and microrheological measurements. The extracted shell diameter is comparable to the PEO end-to-end distance, indicating the importance of dangling chain ends. Our methodology reveals the nanoscopic interfacial rheology of hydrogels and is applicable to different kinds of viscoelastic fluids and particles.

6.
Biophys J ; 123(10): 1173-1183, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515300

RESUMEN

We present a method to differentiate organisms solely by their motion based on the generalized Langevin equation (GLE) and use it to distinguish two different swimming modes of strongly confined unicellular microalgae Chlamydomonas reinhardtii. The GLE is a general model for active or passive motion of organisms and particles that can be derived from a time-dependent general many-body Hamiltonian and in particular includes non-Markovian effects (i.e., the trajectory memory of its past). We extract all GLE parameters from individual cell trajectories and perform an unbiased cluster analysis to group them into different classes. For the specific cell population employed in the experiments, the GLE-based assignment into the two different swimming modes works perfectly, as checked by control experiments. The classification and sorting of single cells and organisms is important in different areas; our method, which is based on motion trajectories, offers wide-ranging applications in biology and medicine.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/fisiología , Movimiento , Modelos Biológicos , Análisis de la Célula Individual , Análisis por Conglomerados , Movimiento (Física)
7.
Nanoscale ; 16(6): 3144-3159, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38258993

RESUMEN

Using all-atom molecular dynamics simulations, we report the structure and ion transport characteristics of a new class of solid polymer electrolytes that contain the biodegradable and mechanically stable biopolymer pectin. We used highly conducting ethylene carbonate (EC) as a solvent for simulating lithium-trifluoromethanesulfonimide (LiTFSI) salt containing different weight percentages of pectin. Our simulations reveal that the pectin chains reduce the coordination number of lithium ions around their counterions (and vice versa) because of stronger lithium-pectin interactions compared to lithium-TFSI interactions. Furthermore, the pectin is found to promote smaller ionic aggregates over larger ones, in contrast to the results typically reported for liquid and polymer electrolytes. We observed that the loading of pectin in EC-LiTFSI electrolytes increases their viscosity (η) and relaxation timescales (τc), indicating higher mechanical stability, and, consequently, a decrease of the mean squared displacement, diffusion coefficient (D), and Nernst-Einstein conductivity (σNE). Interestingly, while the lithium diffusivities are related to the ion-pair relaxation timescales as D+ ∼ τc-3.1, the TFSI- diffusivities exhibit excellent correlations with ion-pair relaxation timescales as D- ∼ τc-0.95. On the other hand, the NE conductivities are dictated by distinct transport mechanisms and scales with ion-pair relaxation timescales as σNE ∼ τc-1.85.

8.
Faraday Discuss ; 249(0): 162-180, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37779420

RESUMEN

Nanoscale fluid transport is typically pictured in terms of atomic-scale dynamics, as is natural in the real-space framework of molecular simulations. An alternative Fourier-space picture, that involves the collective charge fluctuation modes of both the liquid and the confining wall, has recently been successful at predicting new nanofluidic phenomena such as quantum friction and near-field heat transfer, that rely on the coupling of those fluctuations. Here, we study the charge fluctuation modes of a two-dimensional (planar) nanofluidic channel. Introducing confined response functions that generalize the notion of surface response function, we show that the channel walls exhibit coupled plasmon modes as soon as the confinement is comparable to the plasmon wavelength. Conversely, the water fluctuations remain remarkably bulk-like, with significant confinement effects arising only when the wall spacing is reduced to 7 Å. We apply the confined response formalism to predict the dependence of the solid-water quantum friction and thermal boundary conductance on channel width for model channel wall materials. Our results provide a general framework for Coulomb interactions of fluctuating matter under nanoscale confinement.

9.
Chem Rev ; 124(1): 1-26, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38118062

RESUMEN

From the stability of colloidal suspensions to the charging of electrodes, electric double layers play a pivotal role in aqueous systems. The interactions between interfaces, water molecules, ions and other solutes making up the electrical double layer span length scales from Ångströms to micrometers and are notoriously complex. Therefore, explaining experimental observations in terms of the double layer's molecular structure has been a long-standing challenge in physical chemistry, yet recent advances in simulations techniques and computational power have led to tremendous progress. In particular, the past decades have seen the development of a multiscale theoretical framework based on the combination of quantum density functional theory, force-field based simulations and continuum theory. In this Review, we discuss these theoretical developments and make quantitative comparisons to experimental results from, among other techniques, sum-frequency generation, atomic-force microscopy, and electrokinetics. Starting from the vapor/water interface, we treat a range of qualitatively different types of surfaces, varying from soft to solid, from hydrophilic to hydrophobic, and from charged to uncharged.

10.
Phys Chem Chem Phys ; 26(2): 713-723, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38100091

RESUMEN

Surface phenomena in aqueous environments such as long-range hydrophobic attraction, macromolecular adhesion, and even biofouling are predominantly influenced by a fundamental parameter-the water contact angle. The minimal contact angle required for these and related phenomena to occur has been repeatedly reported to be around 65° and is commonly referred to as the "Berg limit." However, the universality of this specific threshold across diverse contexts has remained puzzling. In this perspective article, we aim to rationalize the reoccurrence of this enigmatic contact angle. We show that the relevant scenarios can be effectively conceptualized as three-phase problems involving the surface of interest, water, and a generic oil-like material that is representative of the nonpolar constituents within interacting entities. Our analysis reveals that attraction and adhesion emerge when substrates display an underwater oleophilic character, corresponding to a "hydrophobicity under oil", which occurs for contact angles above approximately 65°. This streamlined view provides valuable insights into macromolecular interactions and holds implications for technological applications.

11.
Phys Rev Lett ; 131(22): 228202, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101355

RESUMEN

Based on a Hamiltonian that incorporates the elastic coupling between a tracer particle and the embedding active viscoelastic biomatter, we derive a generalized non-Markovian Langevin model for the nonequilibrium mechanical tracer response. Our analytical expressions for the frequency-dependent tracer response function and the tracer positional autocorrelation function agree quantitatively with experimental data for red blood cells and actomyosin networks with and without adenosine triphosphate over the entire frequency range and in particular reproduce the low-frequency violation of the fluctuation-dissipation theorem. The viscoelastic power laws, the elastic constants and effective friction coefficients extracted from the experimental data allow straightforward physical interpretation.

12.
Commun Chem ; 6(1): 236, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919471

RESUMEN

Single Atom Catalysis (SAC) is an expanding field of heterogeneous catalysis in which single metallic atoms embedded in different materials catalyze a chemical reaction, but these new catalytic materials still lack fundamental understanding when used in electrochemical environments. Recent characterizations of non-noble metals like Fe deposited on N-doped graphitic materials have evidenced two types of Fe-N4 fourfold coordination, either of pyridine type or of porphyrin type. Here, we study these defects embedded in a graphene sheet and immersed in an explicit aqueous medium at the quantum level. While the Fe-pyridine SAC model is clear cut and widely studied, it is not the case for the Fe-porphyrin SAC that remains ill-defined, because of the necessary embedding of odd-membered rings in graphene. We first propose an atomistic model for the Fe-porphyrin SAC. Using spin-polarized ab initio molecular dynamics, we show that both Fe SACs spontaneously adsorb two interfacial water molecules from the solvent on opposite sides. Interestingly, we unveil a different catalytic reactivity of the two hydrated SAC motives: while the Fe-porphyrin defect eventually dissociates an adsorbed water molecule under a moderate external electric field, the Fe-pyridine defect does not convey water dissociation.

13.
J Chem Phys ; 159(15)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37843063

RESUMEN

We investigate the effect of pectin on the structure and ion transport properties of the room-temperature ionic liquid electrolyte 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) using molecular dynamics simulations. We find that pectin induces intriguing structural changes in the electrolyte that disrupt large ionic aggregates and promote the formation of smaller ionic clusters, which is a promising finding for ionic conductivity. Due to pectin in [BMIM][PF6] electrolytes, the diffusion coefficient of cations and anions is observed to decrease by a factor of four for a loading of 25 wt. % of pectin in [BMIM][PF6] electrolyte. A strong correlation between the ionic diffusivities (D) and ion-pair relaxation timescales (τc) is observed such that D ∼ τc-0.75 for cations and D ∼ τc-0.82 for anions. The relaxation timescale exponents indicate that the ion transport mechanisms in pectin-[BMIM][PF6] electrolytes are slightly distinct from those found in neat [BMIM][PF6] electrolytes (D∼τc-1). Since pectin marginally affects ionic diffusivities at the gain of smaller ionic aggregates and viscosity, our results suggest that pectin-ionic liquid electrolytes offer improved properties for battery applications, including ionic conductivity, mechanical stability, and biodegradability.

14.
Proc Natl Acad Sci U S A ; 120(31): e2220068120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490533

RESUMEN

When described by a low-dimensional reaction coordinate, the folding rates of most proteins are determined by a subtle interplay between free-energy barriers, which separate folded and unfolded states, and friction. While it is commonplace to extract free-energy profiles from molecular trajectories, a direct evaluation of friction is far more elusive and typically relies on fits of measured reaction rates to memoryless reaction-rate theories. Here, using memory-kernel extraction methods founded on a generalized Langevin equation (GLE) formalism, we directly calculate the time-dependent friction acting on the fraction of native contacts reaction coordinate Q, evaluated for eight fast-folding proteins, taken from a published set of large-scale molecular dynamics protein simulations. Our results reveal that, across the diverse range of proteins represented in this dataset, friction is more influential than free-energy barriers in determining protein folding rates. We also show that proteins fold in a regime where the finite decay time of friction significantly reduces the folding times, in some instances by as much as a factor of 10, compared to predictions based on memoryless friction.


Asunto(s)
Simulación de Dinámica Molecular , Pliegue de Proteína , Fricción , Proteínas/metabolismo
15.
PNAS Nexus ; 2(6): pgad190, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383024

RESUMEN

Lipid monolayers are ubiquitous in biological systems and have multiple roles in biotechnological applications, such as lipid coatings that enhance colloidal stability or prevent surface fouling. Despite the great technological importance of surface-adsorbed lipid monolayers, the connection between their formation and the chemical characteristics of the underlying surfaces has remained poorly understood. Here, we elucidate the conditions required for stable lipid monolayers nonspecifically adsorbed on solid surfaces in aqueous solutions and water/alcohol mixtures. We use a framework that combines the general thermodynamic principles of monolayer adsorption with fully atomistic molecular dynamics simulations. We find that, very universally, the chief descriptor of adsorption free energy is the wetting contact angle of the solvent on the surface. It turns out that monolayers can form and remain thermodynamically stable only on substrates with contact angles above the adsorption contact angle, θads. Our analysis establishes that θads falls into a narrow range of around 60∘-70∘ in aqueous media and is only weakly dependent on the surface chemistry. Moreover, to a good approximation, θads is roughly determined by the ratio between the surface tensions of hydrocarbons and the solvent. Adding small amounts of alcohol to the aqueous medium lowers θads and thereby facilitates monolayer formation on hydrophilic solid surfaces. At the same time, alcohol addition weakens the adsorption strength on hydrophobic surfaces and results in a slowdown of the adsorption kinetics, which can be useful for the preparation of defect-free monolayers.

16.
J Chem Phys ; 158(19)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37184000

RESUMEN

Finite-size effects are challenging in molecular dynamics simulations because they have significant effects on computed static and dynamic properties, in particular diffusion constants, friction coefficients, and time- or frequency-dependent response functions. We investigate the influence of periodic boundary conditions on the velocity autocorrelation function and the frequency-dependent friction of a particle in a fluid, and show that the long-time behavior (starting at the picosecond timescale) is significantly affected. We develop an analytical correction allowing us to subtract the periodic boundary condition effects. By this, we unmask the power-law long-time tails of the memory kernel and the velocity autocorrelation function in liquid water and a Lennard-Jones fluid from simulations with rather small box sizes.

17.
Small ; 19(15): e2206154, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36651127

RESUMEN

As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.


Asunto(s)
COVID-19 , Fulerenos , Humanos , SARS-CoV-2 , Fulerenos/farmacología , Unión Proteica
18.
J Phys Chem B ; 126(49): 10295-10304, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36473702

RESUMEN

When described by a one-dimensional reaction coordinate, pair-reaction rates in a solvent depend, in addition to the potential barrier height and the friction coefficient, on the potential shape, the effective mass, and the friction relaxation spectrum, but a rate theory that accurately accounts for all of these effects does not exist. After a review of classical reaction-rate theories, we show how to extract all parameters of the generalized Langevin equation (GLE) and, in particular, the friction memory function from molecular dynamics (MD) simulations of two prototypical pair reactions in water, the dissociation of NaCl and of two methane molecules. The memory exhibits multiple time scales and, for NaCl, pronounced oscillatory components. Simulations of the GLE by Markovian embedding techniques accurately reproduce the pair-reaction kinetics from MD simulations without any fitting parameters, which confirms the accuracy of the approximative form of the GLE and of the parameter extraction techniques. By modification of the GLE parameters, we investigate the relative importance of memory, mass, and potential shape effects. Neglect of memory slows down NaCl and methane dissociation by roughly a factor of 2; neglect of mass accelerates reactions by a similar factor, and the harmonic approximation of the potential shape gives rise to slight acceleration. This partial error cancellation explains why Kramers' theory, which neglects memory effects and treats the potential shape in harmonic approximation, describes reaction rates better than more sophisticated theories. In essence, all three effects, friction memory, inertia, and the potential shape nonharmonicity, are important to quantitatively describe pair-reaction kinetics in water.


Asunto(s)
Cloruro de Sodio , Agua , Cinética , Simulación de Dinámica Molecular , Metano
19.
ACS Phys Chem Au ; 2(6): 506-514, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36465835

RESUMEN

The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg2+ and SO4 2- ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics. Here, we introduce asymmetric SO4 2- stretching vibrations as new and most specific local probes of solvation dynamics that allow to access ion hydration dynamics at the dilute concentration (0.2 M) of a native electrolyte environment. Highly sensitive heterodyne 2D-IR spectroscopy in the fingerprint region of the SO4 2- ions around 1100 cm-1 reveals a specific slow-down of solvation dynamics for hydrated MgSO4 and for Na2SO4 in the presence of Mg2+ ions, which manifests as a retardation of spectral diffusion compared to aqueous Na2SO4 solutions in the absence of Mg2+ ions. Extensive molecular dynamics and density functional theory QM/MM simulations provide a microscopic view of the observed ultrafast dephasing and hydration dynamics. They suggest a molecular picture where the slow-down of hydration dynamics arises from the structural peculiarities of solvent-shared SO4 2--Mg2+ ion pairs.

20.
J Chem Phys ; 157(24): 240902, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36586978

RESUMEN

Although conceptually simple, the air-water interface displays rich behavior and is subject to intense experimental and theoretical investigations. Different definitions of the electrostatic surface potential as well as different calculation methods, each relevant for distinct experimental scenarios, lead to widely varying potential magnitudes and sometimes even different signs. Based on quantum-chemical density-functional-theory molecular dynamics (DFT-MD) simulations, different surface potentials are evaluated and compared to force-field (FF) MD simulations. As well explained in the literature, the laterally averaged electrostatic surface potential, accessible to electron holography, is dominated by the trace of the water molecular quadrupole moment, and using DFT-MD amounts to +4.35 V inside the water phase, very different from results obtained with FF water models which yield negative values of the order of -0.4 to -0.6 V. Thus, when predicting potentials within water molecules, as relevant for photoelectron spectroscopy and non-linear interface-specific spectroscopy, DFT simulations should be used. The electrochemical surface potential, relevant for ion transfer reactions and ion surface adsorption, is much smaller, less than 200 mV in magnitude, and depends specifically on the ion radius. Charge transfer between interfacial water molecules leads to a sizable surface potential as well. However, when probing electrokinetics by explicitly applying a lateral electric field in DFT-MD simulations, the electrokinetic ζ-potential turns out to be negligible, in agreement with predictions using continuous hydrodynamic models. Thus, interfacial polarization charges from intermolecular charge transfer do not lead to significant electrokinetic mobility at the pristine vapor-liquid water interface, even assuming these transfer charges are mobile in an external electric field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA