Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(50): e202309505, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37872121

RESUMEN

Metal-organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M-HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time-resolved terahertz spectroscopy, optical transient absorption spectroscopy, X-ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through-space hole transport mechanism through the interlayer sheet π-π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu-HHTP MOF is found to be 65.5 S m-1 , which represents the record high photoconductivity for porous MOF materials based on catecholate ligands.

2.
J Phys Chem Lett ; 14(26): 5960-5965, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37345878

RESUMEN

We report a systematic study on the correlation of the metal nodes in M-THQ conducting MOFs (M = Fe, Ni, Cu, and Zn; THQ = tetra-hydroxybenzoquinone) with their structure, photophysical property, and photoconductivity. We found that the structural preference in these MOFs is controlled by metal node identity where Cu prefers a square planar coordination which leads to a 2D Kagome-type structure. Fe, Ni, and Zn prefer an octahedral sphere which leads to a 3D structure. Fe-THQ has the smallest band gap and highest photoconduction as well as a long-lived ligand-to-metal charge transfer state due to the mixed valence state revealed by time-resolved optical and X-ray absorption and terahertz spectroscopy. These results demonstrate the importance of the metal node in tuning the photophysical and photocatalytic properties of MOFs.

4.
ACS Energy Lett ; 7(11): 3807-3816, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36398093

RESUMEN

Transparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSb2O6, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency. To validate our computational predictions, we have synthesized both powder samples and single crystals of Ga-doped ZnSb2O6 which conclusively show behavior consistent with a degenerate transparent conducting oxide. This study demonstrates the possibility of a family of Sb(V)-containing oxides for transparent conducting oxide and power electronics applications.

5.
Nat Commun ; 13(1): 5150, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071037

RESUMEN

Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms of Geobacter sulfurreducens use nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis.


Asunto(s)
Nanocables , Biopelículas , Citocromos , Transporte de Electrón , Electrones
6.
J Phys Chem Lett ; 13(35): 8319-8326, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040312

RESUMEN

Molybdenum disulfide (MoS2) has been extensively studied in its commonly occurring semiconducting 2H phase. Recent synthetic advances have enabled the bulk synthesis of the catalytically promising metallic 1T phase. However, the conductivity of bulk 1T-MoS2 has not been well characterized to ascertain the carrier transport properties. Terahertz (THz) spectroscopy is an ideal technique for obtaining this crucial information because it is a noncontact method of measuring the conductivity of emerging materials with ultrafast time resolution. This work applies THz spectroscopy to bulk 2H-MoS2 and 1T-MoS2, representing the first application of the technique on the 1T phase, with measurements confirming the semiconducting character of 2H-MoS2 and the metallic character of 1T-MoS2. This study provides new insight into the metallic nature of bulk 1T-MoS2 and a direct comparison to the semiconducting 2H phase that, together with physical characterization to obtain material parameters, are important for optimizing applications in catalysis devices and beyond.

7.
Sci Adv ; 8(19): eabm7193, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35544567

RESUMEN

Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, Geobacter sulfurreducens transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>1010 s-1) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.

8.
Photosynth Res ; 151(2): 145-153, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33219918

RESUMEN

Terahertz (THz) spectroscopy provides a noncontact method to measure the ultrafast dynamics and photoconductivity of mobile carriers in semiconducting materials. This has proven useful in studying artificial photosynthesis devices which use semiconductor photoelectrodes. We present a brief introduction to optical-pump THz-probe (OPTP) spectroscopy, a technique that provides unique and useful insight into interfacial electron transfer (from the surface-attached dye to the conduction band of the semiconductor) in dye-sensitized photoelectrochemical cells. Compared with more familiar methods like visible transient absorption spectroscopy, OPTP spectroscopy stands out in offering both sub-picosecond time resolution as well as sensitivity to mobile carriers (electrons and holes) in the semiconductor portion of artificial photosynthesis devices. The mobile carriers are crucial to device performance as only they pass to the other half cell to complete the reaction. In order to highlight these advantages and illustrate the types of questions OPTP spectroscopy can address, we discuss three case studies. In the first, OPTP spectroscopy is used to measure the injection rates from a set of six different dyes, revealing the effect of the energetics and lifetimes of the dye excited states on interfacial electron transfer. The subsequent case studies investigate the influence of varying the moieties which bind to the surface (anchors), as well as the moieties that connect the chromophore with these anchors (linkers). OPTP spectroscopy was used to measure the interfacial electron transfer rate as these moieties were varied.


Asunto(s)
Espectroscopía de Terahertz , Transporte de Electrón , Electrones , Fotosíntesis , Análisis Espectral
9.
Chem Rev ; 122(1): 132-166, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34613710

RESUMEN

Time-resolved spectroscopy is an essential part of both fundamental and applied chemical research. Such techniques access light-initiated dynamics on time scales ranging from femtosecond to microsecond. Many techniques falling under this description have been applied to gain significant insight into metal-organic frameworks (MOFs), a diverse class of porous coordination polymers. MOFs are highly tunable, both compositionally and structurally, and unique challenges are encountered in applying time-resolved spectroscopy to interrogate their light-initiated properties. These properties involve various excited state mechanisms such as crystallographically defined energy transfer, charge transfer, and localization within the framework, photoconductivity, and structural dynamics. The field of time-resolved MOF spectroscopic studies is quite nascent; each original report cited in this review was published within the past decade. As such, this review is a timely and comprehensive summary of the most significant contributions in this emerging field, with focuses on the overarching spectroscopic concepts applied and on identifying key challenges and future outlooks moving forward.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Análisis Espectral
10.
Anal Chem ; 93(32): 11243-11250, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34355556

RESUMEN

Terahertz (THz) spectroscopy is a powerful tool for unambiguously extracting complex-valued material properties (e.g., refractive index, conductivity, etc.) from a wide range of samples, with applications ranging from materials science to biology. However, extracting complex refractive indices from THz time-domain spectroscopy data can prove challenging, especially for multilayer samples. These challenges arise from the large number of transmission-reflection paths the THz pulse can take through the sample layers, leading to unwieldy strings of Fresnel coefficients. This issue has often been addressed using various approximations. However, these approximations are only applicable to specific classes of samples and can give erroneous results when misapplied. An alternative to this approach is to programmatically model all possible paths through the sample. The many paths through the sample layers can be modeled as a tree that branches at every point where the paths diverge, i.e., whenever the pulse can either be transmitted or reflected. This tree can then be used to generate expressions relating the unknown refractive index to the observed time domain data. Here, we provide a freely available open-source package implementing this method as both a MATLAB library and a corresponding graphical user interface, which can also be run without a MATLAB license (https://github.com/YaleTHz/nelly). We have tested this method for a range of samples and compared the results to commonly used approximations to demonstrate its accuracy and wide applicability. Our method consistently gives better agreement than common approximations.


Asunto(s)
Espectroscopía de Terahertz , Refractometría
11.
J Am Chem Soc ; 142(50): 21050-21058, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33226217

RESUMEN

Conductive metal organic frameworks (MOFs) represent a promising class of porous crystalline materials that have demonstrated potential in photo-electronics and photocatalytic applications. However, the lack of fundamental understanding on charge transport (CT) mechanism as well as the correlation of CT mechanism with their structure hampered their further development. Herein, we report the direct evidence of CT mechanism in 2D Cu-THQ MOFs and the correlation of temporal and spatial behaviors of charge carriers with their photoconductivity by combining three advanced spectroscopic methods, including time resolved optical and X-ray absorption spectroscopy and terahertz spectroscopy. In addition to Cu-THQ, the CT in Cu/Zn-THQ after incorporating Zn2+ guest metal was also examined to uncover the contribution of through space pathway, as the presence of the redox inactive 3d10 Zn2+ is expected to perturb the long range in-plane CT. We show that the hot carriers in Cu-THQ generated after photoexcitation are highly mobile and undergo fast localization to a lower energy state (cool carriers) with electrons occupying Cu center and holes in ligands. The cool carriers, which have super long lifetime (>17 ns), are responsible for the long-term photoconductivity in Cu-THQ and transport through the O-Cu-O motif with negligible contribution from interlayer ligand π-π stacking, as incorporation of Zn2+ in Cu-THQ significantly reduced photoconductivity. These unprecedented results not only demonstrate the capability to experimentally probe CT mechanism but also provide important insight in the rational design of 2D MOFs for photoelectronic and photocatalytic applications.

12.
J Phys Chem Lett ; 11(20): 8873-8879, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33017538

RESUMEN

Graphitic carbon nitride (g-C3N4) and its doped analogues have been studied over the past decade in part due to their promising applications in heterogeneous photocatalysis; however, the effect of doping on the photoconductivity is poorly understood. Herein, we investigate Cu doped g-C3N4 (Cu-g-C3N4) and demonstrate via extended X-ray absorption fine structure that Cu+ incorporates as an individual ion. Time-resolved optical pump terahertz probe spectroscopy was utilized to measure the ultrafast photoconductivity in response to a 400 nm pump pulse and showed that the Cu+ dopant significantly enhances photoconductivity of the as-prepared powdered sample, which decays within 10 ps. Furthermore, a film preparation technique was applied that further enhanced the photoconductivity and induced a longer-lived photoconductive state with a lifetime on the order of 100 ps. This study provides valuable insight into the ultrafast photoconductivity dynamics of g-C3N4 materials, which is essential toward developing efficient g-C3N4 photocatalysts.

13.
Anal Chem ; 92(6): 4187-4192, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32091896

RESUMEN

The characterization of emerging materials is crucial for the experimentally driven design of next-generation technologies. We describe a cost- and time-effective method for suspending nanoparticles and other photoactive materials in Nafion for transient spectroscopy and time-resolved terahertz (THz) photoconductivity measurements. Nafion is an ideal suspension matrix because it has high transparency throughout the UV/vis/near-IR and THz regions of the spectrum. Suspensions of nanoparticles in Nafion require only small amounts of sample (<5 mg) and can be prepared and deposited in ∼1 h. The suspension is well-suited for transient THz measurements, which can be used to determine the photoconductivity spectrum of the embedded nanoparticles. In this work, we used silicon nanoparticles as a model material to demonstrate the efficacy of Nafion suspensions for transient THz spectroscopy. This methodology can be used for rapid and cost-effective measurements of emerging materials such as solar materials, electrocatalysts, and nanomaterials.

14.
J Am Chem Soc ; 141(25): 9793-9797, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31179698

RESUMEN

While metal-organic frameworks (MOFs) have been under thorough investigation over the past two decades, photoconductive MOFs are an emerging class of materials with promising applications in light harvesting and photocatalysis. To date, there is not a general method to investigate the photoconductivity of polycrystalline MOF samples as-prepared. Herein, we utilize time-resolved terahertz spectroscopy along with a new sample preparation method to determine the photoconductivity of Zn2TTFTB, an archetypical conductive MOF, in a noncontact manner. Using this technique, we were able to gain insight into MOF photoconductivity dynamics with subpicosecond resolution, revealing two distinct carrier lifetimes of 0.6 and 31 ps and a long-lived component of several ns. Additionally, we determined the frequency dependent photoconductivity of Zn2TTFTB which was shown to follow Drude-Smith behavior. Such insights are crucially important with regard to developing the next generation of functional photoconductive MOF materials.


Asunto(s)
Conductividad Eléctrica , Estructuras Metalorgánicas/química , Luz , Estructuras Metalorgánicas/efectos de la radiación , Refractometría , Espectroscopía de Terahertz
15.
J Phys Chem Lett ; 10(10): 2624-2628, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31039310

RESUMEN

Determining the sequence and structure of peptides is crucial for understanding their structure-property relationships. Among many techniques, structures are typically elucidated using nuclear magnetic resonance spectroscopy and single crystal X-ray diffraction measurements. In this study, we present terahertz time-domain spectroscopy (THz-TDS) as a complementary, nondestructive technique that is sensitive to both the primary and secondary structures of tetrapeptides. Using only a few milligrams of peptide, THz-TDS spectra have been measured, some of which have been supported by density functional theory (DFT) calculations, to distinguish six tetrameric peptides with similar primary and secondary structures.


Asunto(s)
Péptidos/química , Espectroscopía de Terahertz , Teoría Funcional de la Densidad , Conformación Proteica
16.
J Phys Chem A ; 122(28): 5978-5982, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29894636

RESUMEN

We present terahertz (THz) measurements and density functional theory (DFT) calculations of two amino acid crystals: dl-norleucine and dl-methionine. Their molecular structures are very similar and therefore also their crystal structures. We report the absorption spectra for both amino acids, which have a strong resonance at 1.87 THz in dl-norleucine and 1.94 THz in dl-methionine. In addition, we find a higher frequency resonance at 2.49 THz in dl-methionine, which has no corresponding mode in dl-norleucine. The experimental data are supported by DFT calculations, which show that the origin of the two strongest vibrational modes in dl-norleucine and dl-methionine are based on the same underlying vibrational motions, whereas the 2.49 THz resonance in dl-methionine is due to the motion of the sulfur atom, which is not present in dl-norleucine.

17.
Phys Chem Chem Phys ; 20(1): 276-283, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29204594

RESUMEN

dl-Norvaline is a molecular crystal at room temperature and it undergoes a phase transition when cooled below 190 K. This phase transition is believed to be Martensitic, thus making it of particular interest for molecular machines. In this paper we investigate this phase transition by measuring its terahertz (THz) spectrum over a range of temperatures. Temperature-dependent THz time-domain spectroscopy (THz-TDS) measurements reveal that the transition temperature (Tß→α) is 190 K. The influence of nucleation seeds was analyzed by determining the Tß→α of molecular crystals with varying grain size. Grains of 5 µm or less result in a lower transition temperature (Tß→α = 180 K) compared to larger grains of 125-250 µm (Tß→α = 190 K). Additionally, we gain insight into the physical process of the phase transition via temperature-dependent THz-TDS spectra of doped and mixed molecular crystals. The addition of molecular dopants, which differ from dl-norvaline only at the end of the side chain which resides in the hydrophobic layers of the crystal, decreases Tß→α. This is consistent with a solid-solid phase transition in which the unit cell shifts along this hydrophobic layer, and it leads us to believe that the phase transition in dl-norvaline is Martensitic in nature.

18.
Opt Express ; 23(10): 12900-9, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-26074543

RESUMEN

We demonstrate a terahertz time-domain spectroscope for spatially resolved pump-probe experiments which are based on terahertz probe pulse generation with a photo-conductive switch synchronized to the pump pulse generation of a nanosecond laser. The accessible pump-probe delay ranges from 600 ps up to 200 µs. The spatial resolution of the spectroscope is better than 50 µm. We use the measurement system for spatially resolved lifetime mapping of photo-induced carriers in thin silicon in dependence on the photoexcitation intensity of the pump laser. At an optical pump intensity of 70mW/cm2, we measured a carrier lifetime of 15.7 µs for silicon with 200 µm thickness and a much shorter carrier lifetime of 233 ns for 30 µm thick silicon.

19.
Opt Lett ; 38(12): 2156-8, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23939008

RESUMEN

We designed and implemented a gradient index metasurface for in-plane focusing of confined terahertz (THz) surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a THz near-field spectroscope. The surface waves were focused to a diameter of 500 µm after a focal length of approximately 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...