Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Basic Res Cardiol ; 117(1): 8, 2022 03 01.
Article En | MEDLINE | ID: mdl-35230541

The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.


Heart Failure , Myocytes, Cardiac , Animals , Cholinergic Agents , Heart Ventricles , Rats , Receptors, Muscarinic
2.
Stem Cell Res ; 55: 102489, 2021 08.
Article En | MEDLINE | ID: mdl-34375846

MYBPC3 is the most frequently affected gene in hypertrophic cardiomyopathy (HCM), which is an autosomal-dominant cardiac disease caused by mutations in sarcomeric proteins. Bi-allelic truncating MYBPC3 mutations are associated with severe forms of neonatal cardiomyopathy. We reprogrammed skin fibroblasts from a HCM patient carrying a heterozygous MYBPC3 truncating mutation into human induced pluripotent stem cells (iPSC) and used CRISPR/Cas9 to generate bi-allelic MYBPC3 truncating mutation and isogenic control hiPSC lines. All lines expressed pluripotency markers, had normal karyotype and differentiated into endoderm, ectoderm and cardiomyocytes in vitro. This set of three lines provides a useful tool to study HCM pathomechanisms.


Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Alleles , Cardiomyopathy, Hypertrophic/genetics , Heterozygote , Humans , Mutation , Myocytes, Cardiac
3.
Curr Protoc Stem Cell Biol ; 55(1): e127, 2020 12.
Article En | MEDLINE | ID: mdl-32956561

The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.


Cryopreservation/methods , Induced Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Cell Line , Humans , Quality Control , Reproducibility of Results
5.
Stem Cell Reports ; 10(3): 822-833, 2018 03 13.
Article En | MEDLINE | ID: mdl-29429959

Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs.


Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Membrane Potentials/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Potassium/metabolism , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans
6.
Sci Rep ; 7(1): 5464, 2017 07 14.
Article En | MEDLINE | ID: mdl-28710467

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for drug testing and modelling genetic disorders. Abnormally low upstroke velocity is a current limitation. Here we investigated the use of 3D engineered heart tissue (EHT) as a culture method with greater resemblance to human heart tissue in comparison to standard technique of 2D monolayer (ML) format. INa was measured in ML or EHT using the standard patch-clamp technique. INa density was ~1.8 fold larger in EHT (-18.5 ± 1.9 pA/pF; n = 17) than in ML (-10.3 ± 1.2 pA/pF; n = 23; p < 0.001), approaching densities reported for human CM. Inactivation kinetics, voltage dependency of steady-state inactivation and activation of INa did not differ between EHT and ML and were similar to previously reported values for human CM. Action potential recordings with sharp microelectrodes showed similar upstroke velocities in EHT (219 ± 15 V/s, n = 13) and human left ventricle tissue (LV, 253 ± 7 V/s, n = 25). EHT showed a greater resemblance to LV in CM morphology and subcellular NaV1.5 distribution. INa in hiPSC-CM showed similar biophysical properties as in human CM. The EHT format promotes INa density and action potential upstroke velocity of hiPSC-CM towards adult values, indicating its usefulness as a model for excitability of human cardiac tissue.


Heart/physiology , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Sodium Channels/metabolism , Tissue Engineering/methods , Action Potentials/drug effects , Biophysical Phenomena , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Ion Channel Gating/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Protein Isoforms/metabolism , Tetrodotoxin/pharmacology
7.
Nat Protoc ; 12(6): 1177-1197, 2017 Jun.
Article En | MEDLINE | ID: mdl-28492526

Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.


Cell Differentiation , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Tissue Engineering/methods , Humans
8.
Stem Cell Reports ; 7(1): 29-42, 2016 07 12.
Article En | MEDLINE | ID: mdl-27211213

Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling.


Heart/growth & development , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Tissue Engineering , Cell Differentiation/genetics , Humans , Mitochondria/metabolism , Myocardial Contraction/genetics , Myocardium/cytology , Myocardium/metabolism , Sarcomeres/metabolism
9.
Basic Res Cardiol ; 109(6): 436, 2014.
Article En | MEDLINE | ID: mdl-25209140

The assessment of proarrhythmic risks of drugs remains challenging. To evaluate the suitability of rat engineered heart tissue (EHT) for detecting proarrhythmic effects. We monitored drug effects on spontaneous contractile activity and, in selected cases, on action potentials (sharp microelectrode) and Ca2+ transients (Fura-2) and contraction under electrical pacing. The Ito-blocker inhibitor 4-aminopyridine increased action potential duration and T2 and caused aftercontractions, which were abolished by inhibitors of ryanodine receptors (RyR2; JTV-519) or sodium calcium exchanger (NCX; SEA0400). 77 Drugs were then tested at 1-10-100× free therapeutic plasma concentrations (FTPC): Inhibitors of IKr, IKs, Ito, antiarrhythmics (8), drugs withdrawn from market for torsades des pointes arrhythmias (TdP, 5), drugs with measurable (7) or isolated TdP incidence (13), drugs considered safe (14), 28 new chemical entities (NCE). Inhibitors of IKr or IKs had no effect alone, but substantially prolonged relaxation time (T2) when combined at high concentration. 15/33 drugs associated with TdP and 6/14 drugs considered non-torsadogenic (cibenzoline, diltiazem, ebastine, ketoconazole, moxifloxacin, and phenytoin) induced concentration-dependent T2 prolongations (10-100× FTPC). Bepridil, desipramine, imipramine, thioridazine, and erythromycin induced irregular beating. Three NCE prolonged T2, one reduced force. Drugs inhibiting repolarization prolong relaxation in rat EHTs and cause aftercontractions involving RyR2 and NCX. Insensitivity to IKr inhibitors makes rat EHTs unsuitable as general proarrhythmia screen, but favors detection of effects on Ito, IKs + Ito or IKs + IKr. Screening a large panel of drugs suggests that effects on these currents, in addition to IKr, are more common than anticipated.


Heart/drug effects , Heart/physiology , Muscle Relaxation/drug effects , Organoids/drug effects , Organoids/physiology , Animals , Arrhythmias, Cardiac/chemically induced , Rats , Rats, Wistar , Time Factors , Tissue Engineering
10.
PLoS One ; 9(6): e98893, 2014.
Article En | MEDLINE | ID: mdl-24892553

Endoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT). We utilized neonatal rat cardiac myocytes for the assessment of cell viability and activation of ER stress-signalling pathways and EHT for functional analysis. (i) Tunicamycin induced ER stress as measured by increased mRNA and protein levels of glucose-regulated protein 78 kDa, P-eIF2α, activating transcription factor 4, C/EBP homologous protein, and cell death. (ii) Guanabenz had no measurable effect alone, but antagonized the effects of tunicamycin on ER stress markers. (iii) Tunicamycin and other known inducers of ER stress (hydrogen peroxide, doxorubicin, thapsigargin) induced cardiac myocyte death, and this was antagonized by guanabenz in a concentration- and time-dependent manner. (iv) ER stressors also induced acute or delayed contractile dysfunction in spontaneously beating EHTs and this was, with the notable exception of relaxation deficits under thapsigargin, not significantly affected by guanabenz. The data confirm that guanabenz interferes with ER stress-signalling and has protective effects on cell survival. Data show for the first time that this concept extends to cardiac myocytes. The modest protection in EHTs points to more complex mechanisms of force regulation in intact functional heart muscle.


Cardiotonic Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Guanabenz/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Cell Survival/drug effects , Gene Expression , RNA, Messenger/genetics , Rats , Tunicamycin/pharmacology
11.
J Mol Cell Cardiol ; 74: 151-61, 2014 Sep.
Article En | MEDLINE | ID: mdl-24852842

Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT.


Induced Pluripotent Stem Cells/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Tissue Culture Techniques/methods , Tissue Engineering/methods , Animals , Animals, Newborn , Biomarkers/metabolism , Calcium/metabolism , Cell Differentiation , Cell Nucleus/physiology , Cell Nucleus/ultrastructure , Connexin 43/metabolism , Cytoplasm/physiology , Cytoplasm/ultrastructure , Electric Stimulation , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Isoproterenol/pharmacology , Myocardial Contraction/physiology , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Sarcomeres/physiology , Sarcomeres/ultrastructure
12.
Am J Physiol Heart Circ Physiol ; 306(9): H1353-63, 2014 May.
Article En | MEDLINE | ID: mdl-24585781

Contraction and relaxation are fundamental aspects of cardiomyocyte functional biology. They reflect the response of the contractile machinery to the systolic increase and diastolic decrease of the cytoplasmic Ca(2+) concentration. The analysis of contractile function and Ca(2+) transients is therefore important to discriminate between myofilament responsiveness and changes in Ca(2+) homeostasis. This article describes an automated technology to perform sequential analysis of contractile force and Ca(2+) transients in up to 11 strip-format, fibrin-based rat, mouse, and human fura-2-loaded engineered heart tissues (EHTs) under perfusion and electrical stimulation. Measurements in EHTs under increasing concentrations of extracellular Ca(2+) and responses to isoprenaline and carbachol demonstrate that EHTs recapitulate basic principles of heart tissue functional biology. Ca(2+) concentration-response curves in rat, mouse, and human EHTs indicated different maximal twitch forces (0.22, 0.05, and 0.08 mN in rat, mouse, and human, respectively; P < 0.001) and different sensitivity to external Ca(2+) (EC50: 0.15, 0.39, and 1.05 mM Ca(2+) in rat, mouse, and human, respectively; P < 0.001) in the three groups. In contrast, no difference in myofilament Ca(2+) sensitivity was detected between skinned rat and human EHTs, suggesting that the difference in sensitivity to external Ca(2+) concentration is due to changes in Ca(2+) handling proteins. Finally, this study confirms that fura-2 has Ca(2+) buffering effects and is thereby changing the force response to extracellular Ca(2+).


Calcium Signaling , Microscopy, Fluorescence/methods , Myocardial Contraction , Myocardium/cytology , Myocytes, Cardiac/metabolism , Tissue Engineering/methods , Animals , Automation, Laboratory , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence/instrumentation , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Rats , Rats, Inbred Lew , Rats, Wistar
13.
J Pharmacol Exp Ther ; 349(1): 39-46, 2014 Apr.
Article En | MEDLINE | ID: mdl-24431469

Stimulation of myocardial ß(1)-adrenoceptors (AR) is a major mechanism that increases cardiac function. We investigated the functional consequences of genetic ß(1)-AR knockdown in three-dimensional engineered heart tissue (EHT). For ß(1)-AR knockdown, short interfering RNA (siRNA) sequences targeting specifically the ß(1)-AR (shB1) and a scrambled control (shCTR) were subcloned into a recombinant adeno-associated virus (AAV)-short hairpin RNA (shRNA) expression system. Transduction efficiency was ∼100%, and radioligand binding revealed 70% lower ß(1)-AR density in AAV6-shB1-transduced EHTs. Force measurements, performed over the culture period of 14 days, showed paradoxically higher force generation in AAV6-shB1 compared with shCTR under basal (0.19 ± 0.01 versus 0.13 ± 0.01 mN) and after ß-AR-stimulated conditions with isoprenaline (Δfractional shortening: 72 ± 5% versus 34 ± 4%). Large scale gene expression analysis revealed that AAV6-shCTR compared with nontransduced EHTs showed only few differentially regulated genes (<20), whereas AAV6-shB1 induced marked changes in gene expression (>250 genes), indicating that ß(1)-AR knockdown itself determines the outcome. None of the regulated genes pointed to obvious off-target effects to explain higher force generation. Moreover, compensational regulation of ß(2)-AR signaling or changes in prominent ß(1)-AR downstream targets could be ruled out. In summary, we show paradoxically higher force generation and isoprenaline responses after efficient ß(1)-AR knockdown in EHTs. Our findings 1) reveal an unexpected layer of complexity in gene regulation after specific ß(1)-AR knockdown rather than unspecific dysregulations through transcriptional interference, 2) challenge classic assumptions on the role of cardiac ß(1)-AR, and 3) may open up new avenues for ß-AR loss-of-function research in vivo.


Gene Knockdown Techniques , Myocardial Contraction , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta-1/genetics , Tissue Engineering , Adenoviridae/genetics , Adrenergic beta-1 Receptor Agonists/pharmacology , Animals , Animals, Newborn , Female , Gene Expression Regulation , Genetic Vectors , Isoproterenol/pharmacology , Male , Microarray Analysis , Myocardial Contraction/drug effects , Myocardial Contraction/genetics , Myocardium/cytology , Myocytes, Cardiac/drug effects , RNA, Small Interfering/genetics , Rats , Rats, Inbred Lew , Rats, Wistar , Tissue Culture Techniques
14.
Hum Mol Genet ; 22(15): 3152-64, 2013 Aug 01.
Article En | MEDLINE | ID: mdl-23575224

Dilated cardiomyopathy (DCM) associates left ventricular (LV) dilatation and systolic dysfunction and is a major cause of heart failure and cardiac transplantation. LMNA gene encodes lamins A/C, proteins of the nuclear envelope. LMNA mutations cause DCM with conduction and/or rhythm defects. The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(ΔK32/+) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic ΔK32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac remodelling. In older hearts, when DCM has developed, the lamin A/C level was normalized and associated with increased toxic ΔK32-lamin expression. Crossing our mice with the Ub(G76V)-GFP ubiquitin-proteasome system (UPS) reporter mice revealed a heart-specific UPS impairment in Het. While UPS impairment itself has a clear deleterious effect on engineered heart tissue's force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of ΔK32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our data provide evidence that Het cardiomyocytes have to deal with major dilemma: mutant lamin A/C degradation or normalization of lamin level to fight the deleterious effect of lamin haploinsufficiency, both leading to DCM.


Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Haploinsufficiency , Heterozygote , Lamin Type A/genetics , Lamin Type A/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cell Nucleus/ultrastructure , Disease Models, Animal , Disease Progression , Female , Lamin Type A/chemistry , Male , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Mutation , Myocardial Contraction/genetics , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin/metabolism
15.
PLoS One ; 5(12): e14263, 2010 Dec 09.
Article En | MEDLINE | ID: mdl-21151612

BACKGROUND: Mechanical overload leads to cardiac hypertrophy and mechanical unloading to cardiac atrophy. Both conditions produce similar transcriptional changes including a re-expression of fetal genes, despite obvious differences in phenotype. MicroRNAs (miRNAs) are discussed as superordinate regulators of global gene networks acting mainly at the translational level. Here, we hypothesized that defined sets of miRNAs may determine the direction of cardiomyocyte plasticity responses. METHODOLOGY/PRINCIPAL FINDINGS: We employed ascending aortic stenosis (AS) and heterotopic heart transplantation (HTX) in syngenic Lewis rats to induce mechanical overloading and unloading, respectively. Heart weight was 26±3% higher in AS (n = 7) and 33±2% lower in HTX (n = 7) as compared to sham-operated (n = 6) and healthy controls (n = 7). Small RNAs were enriched from the left ventricles and subjected to quantitative stem-loop specific RT-PCR targeting a panel of 351 miRNAs. In total, 153 miRNAs could be unambiguously detected. Out of 72 miRNAs previously implicated in the cardiovascular system, 40 miRNAs were regulated in AS and/or HTX. Overall, HTX displayed a slightly broader activation pattern for moderately regulated miRNAs. Surprisingly, however, the regulation of individual miRNA expression was strikingly similar in direction and amplitude in AS and HTX with no miRNA being regulated in opposite direction. In contrast, fetal hearts from Lewis rats at embryonic day 18 exhibited an entirely different miRNA expression pattern. CONCLUSIONS: Taken together, our findings demonstrate that opposite changes in cardiac workload induce a common miRNA expression pattern which is markedly different from the fetal miRNA expression pattern. The direction of postnatal adaptive cardiac growth does, therefore, not appear to be determined at the level of single miRNAs or a specific set of miRNAs. Moreover, miRNAs themselves are not reprogrammed to a fetal program in response to changes in hemodynamic load.


Atrophy/metabolism , Cardiomegaly/metabolism , MicroRNAs/metabolism , Animals , Aortic Valve Stenosis/pathology , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Hemodynamics , Humans , Myocytes, Cardiac/cytology , Phenotype , Protein Biosynthesis , Rats , Rats, Inbred Lew
16.
J Mol Cell Cardiol ; 45(6): 846-52, 2008 Dec.
Article En | MEDLINE | ID: mdl-18848565

Mechanical unloading of failing hearts by left ventricular (LV) assist devices is regularly used as a bridge to transplantation and may lead to symptomatic improvement. The latter has been associated with altered phosphorylation of cardiac regulatory proteins, but the underlying mechanisms remained unknown. Here, we tested whether cardiac unloading alters protein phosphorylation by affecting the corresponding kinase-phosphatase balance. Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation in rats for two weeks (n=8). Native in situ hearts from the recipient animals were used as controls (n=8). The steady-state protein kinase A (PKA) and/or Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) phosphorylation levels of phospholamban (PLB, Ser(16) and Thr(17)) and troponin I (TnI, Ser(23/24)) were decreased by 40-60% in unloaded hearts. Consistently, in these hearts PKA activity was decreased by approximately 80% and the activity of protein phosphatase 1 and 2A was increased by 50% and 90%, respectively. In contrast, CaMKII activity was approximately 60% higher, which may serve as a partial compensation. These data indicate that unloading shifts the kinase-phosphatase balance towards net dephosphorylation of PLB and TnI. This shift may also contribute to the reduction in phosphorylation levels of cardiac phosphoproteins observed in diseased human hearts after LVAD.


Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart-Assist Devices , Muscle Proteins/metabolism , Myocardium/enzymology , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/metabolism , Animals , Calcium-Binding Proteins/metabolism , Heart Transplantation , Heart Ventricles/enzymology , Humans , Male , Phosphorylation , Rats , Rats, Inbred Lew , Transplantation, Homologous , Troponin I/metabolism
...