Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3008, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194072

RESUMEN

The large tunability of band gaps and optical absorptions of armchair MoS2 nanoribbons of different widths under bending is studied using density functional theory and many-body perturbation GW and Bethe-Salpeter equation approaches. We find that there are three critical bending curvatures, and the non-edge and edge band gaps generally show a non-monotonic trend with bending. The non-degenerate edge gap splits show an oscillating feature with ribbon width n, with a period [Formula: see text], due to quantum confinement effects. The complex strain patterns on the bent nanoribbons control the varying features of band structures and band gaps that result in varying exciton formations and optical properties. The binding energy and the spin singlet-triplet split of the exciton forming the lowest absorption peak generally decrease with bending curvatures. The large tunability of optical properties of bent MoS2 nanoribbons is promising and will find applications in tunable optoelectronic nanodevices.

2.
J Chem Phys ; 150(17): 174102, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067878

RESUMEN

Semilocal approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semilocal approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semilocal approximations satisfy, suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGAs) and meta-GGAs, it reduces and often worsens the atomization energies of molecules. Thus, PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here, in particular, to the strongly constrained and appropriately normed (SCAN) meta-GGA, for which the correlation part is already self-interaction-free. This property makes SCAN a natural first candidate for a generalized SIC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA