Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9129, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277427

RESUMEN

The unconventional yeast Yarrowia lipolytica produces erythritol as an osmoprotectant to adapt to osmotic stress. In this study, the array of putative erythrose reductases, responsible for the conversion of d-erythrose to erythritol, was analyzed. Single knockout and multiple knockout strains were tested for their ability to produce polyols in osmotic stress conditions. Lack of six of the reductase genes does not affect erythritol significantly, as the production of this polyol is comparable to the control strain. Deletion of eight of the homologous erythrose reductase genes resulted in a 91% decrease in erythritol synthesis, a 53% increase in mannitol synthesis, and an almost 8-fold increase in arabitol synthesis as compared to the control strain. Additionally, the utilization of glycerol was impaired in the media with induced higher osmotic pressure. The results of this research may shed new light on the production of arabitol and mannitol from glycerol by Y. lipolytica and help to develop strategies for further modification in polyol pathways in these microorganisms.


Asunto(s)
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Aldehído Reductasa/genética , Glicerol/metabolismo , Eritritol/metabolismo , Manitol/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047486

RESUMEN

Proteolytic enzymes are commercially valuable and have multiple applications in various industrial sectors. The most studied proteolytic enzymes produced by Yarrowia lipolytica, extracellular alkaline protease (Aep) and extracellular acid protease (Axp), were shown to be good candidates for different biotechnological applications. In this study, we performed a comprehensive analysis of the alkaline proteolytic enzymes of Yarrowia clade species, including phylogenetic studies, synteny analysis, and protease production and application. Using a combination of comparative genomics approaches based on sequence similarity, synteny conservation, and phylogeny, we reconstructed the evolutionary scenario of the XPR2 gene for species of the Yarrowia clade. Furthermore, except for the proteolytic activity of the analyzed Yarrowia clade strains, the brewers' spent grain (BSG) was used as a substrate to obtain protein hydrolysates with antioxidant activity. For each culture, the degree of hydrolysis was calculated. The most efficient protein hydrolysis was observed in the cultures of Y. lipolytica, Y. galli, and Y. alimentaria. In contrast, the best results obtained using the 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) method were observed for the culture medium after the growth of Y. divulgata, Y. galli, and Y. lipolytica on BSG.


Asunto(s)
Péptido Hidrolasas , Yarrowia , Péptido Hidrolasas/metabolismo , Filogenia , Hidrólisis , Sintenía
3.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36675897

RESUMEN

Although Yarrowia lipolytica is a model yeast for the study of lipid metabolism, its diversity is poorly known, as studies generally consider only a few standard laboratory strains. To extend our knowledge of this biotechnological workhorse, we investigated the genomic and phenotypic diversity of 56 natural isolates. Y. lipolytica is classified into five clades with no correlation between clade membership and geographic or ecological origin. A low genetic diversity (π = 0.0017) and a pan-genome (6528 genes) barely different from the core genome (6315 genes) suggest Y. lipolytica is a recently evolving species. Large segmental duplications were detected, totaling 892 genes. With three new LTR-retrotransposons of the Gypsy family (Tyl4, Tyl9, and Tyl10), the transposable element content of genomes appeared diversified but still low (from 0.36% to 3.62%). We quantified 34 traits with substantial phenotypic diversity, but genome-wide association studies failed to evidence any associations. Instead, we investigated known genes and found four mutational events leading to XPR2 protease inactivation. Regarding lipid metabolism, most high-impact mutations were found in family-belonging genes, such as ALK or LIP, and therefore had a low phenotypic impact, suggesting that the huge diversity of lipid synthesis and accumulation is multifactorial or due to complex regulations.

4.
J Fungi (Basel) ; 8(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628674

RESUMEN

Converting lignocellulosic biomass into value-added products is one of the challenges in developing a sustainable economy. Attempts to engineer fermenting yeasts to recover plant waste are underway. Although intensive metabolic engineering has been conducted to obtain Saccharomyces cerevisiae strains capable of metabolising pentose sugars mainly found in hemicellulose, enzymatic hydrolysis after pretreatment is still required. Blastobotrys raffinosifermentans, which naturally assimilates xylose and arabinose and displays numerous glycoside hydrolases, is a good candidate for direct and efficient conversion of renewable biomass. However, a greater diversity of tools for genetic engineering is needed. Here, we report the characterisation of four new promising promoters, a new dominant marker, and two vectors for the secretion of epitope tagged proteins along with a straightforward transformation protocol. The TDH3 promoter is a constitutive promoter stronger than TEF1, and whose activity is maintained at high temperature or in the presence of ethanol. The regulated promoters respond to high temperature for HSP26, gluconeogenic sources for PCK1 or presence of xylose oligomers for XYL1. Two expression/secretion vectors were designed based on pTEF1 and pTDH3, two endogenous signal peptides from an α-arabinanase and an α-glucuronidase, and two epitopes. A heterologous α-arabinoxylan hydrolase from Apiotrichum siamense was efficiently secreted using these two vectors.

5.
Toxins (Basel) ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564619

RESUMEN

Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited in culture collections as well as in strains freshly isolated from blue cheeses. Possible benefits to the host from harboring such VLEs were analyzed. VLEs occurred frequently among fresh D. hansenii isolates (15/60 strains), as opposed to strains obtained from culture collections (0/75 strains). Eight new different systems were identified: four composed of two elements and four of three elements. Full sequences of three new VLE systems obtained by NGS revealed extremely high conservation among the largest molecules in these systems except for one ORF, probably encoding a protein resembling immunity determinant to killer toxins of VLE origin in other yeast species. ORFs that could be potentially involved in killer activity due to similarity to genes encoding proteins with domains of chitin-binding/digesting and deoxyribonuclease NucA/NucB activity, could be distinguished in smaller molecules. However, the discovered VLEs were not involved in the biocontrol of Yarrowia lipolytica and Penicillium roqueforti present in blue cheeses.


Asunto(s)
Queso/virología , Citoplasma/virología , Debaryomyces/virología , Micotoxinas/análisis , Retroelementos
6.
Sci Rep ; 11(1): 6412, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742083

RESUMEN

The oleaginous yeast Yarrowia lipolytica is a potent cell factory as it is able to use a wide variety of carbon sources to convert waste materials into value-added products. Nonetheless, there are still gaps in our understanding of its central carbon metabolism. Here we present an in-depth study of Y. lipolytica hexokinase (YlHxk1), a structurally unique protein. The greatest peculiarity of YlHxk1 is a 37-amino acid loop region, a structure not found in any other known hexokinases. By combining bioinformatic and experimental methods we showed that the loop in YlHxk1 is essential for activity of this protein and through that on growth of Y. lipolytica on glucose and fructose. We further proved that the loop in YlHxk1 hinders binding with trehalose 6-phosphate (T6P), a glycolysis inhibitor, as hexokinase with partial deletion of this region is 4.7-fold less sensitive to this molecule. We also found that YlHxk1 devoid of the loop causes strong repressive effect on lipase-encoding genes LIP2 and LIP8 and that the hexokinase overexpression in Y. lipolytica changes glycerol over glucose preference when cultivated in media containing both substrates.


Asunto(s)
Expresión Génica , Hexoquinasa/química , Hexoquinasa/metabolismo , Yarrowia/enzimología , Yarrowia/genética , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Biología Computacional/métodos , Medios de Cultivo/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Fructosa/metabolismo , Proteínas Fúngicas/genética , Glucosa/metabolismo , Glicerol/metabolismo , Glucólisis/efectos de los fármacos , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/genética , Cinética , Lipasa/genética , Organismos Modificados Genéticamente , Plásmidos/genética , Fosfatos de Azúcar/metabolismo , Fosfatos de Azúcar/farmacología , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Trehalosa/farmacología , Yarrowia/crecimiento & desarrollo
7.
FEMS Yeast Res ; 20(8)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33206977

RESUMEN

Blastobotrys raffinosifermentans is an ascomycetous yeast with biotechnological applications, recently shown to be an oleaginous yeast accumulating lipids under nitrogen limitation. Diacylglycerol acyltransferases (DGATs) act in the lipid storage pathway, in the last step of triacylglycerol biosynthesis. Two DGAT families are widespread in eukaryotes. We first checked that B. raffinosifermentans strain LS3 possessed both types of DGAT, and we then overexpressed the native DGAT-encoding genes, DGA1 and DGA2, separately or together. DGA2 (from the DGAT1 family) overexpression was sufficient to increase lipid content significantly in LS3, to up to 26.5% of dry cell weight (DCW), 1.6 times the lipid content of the parental strain (16.90% of DCW) in glucose medium under nitrogen limitation. By contrast, DGA1 (of the DGAT2 type) overexpression led to a large increase (up to 140-fold) in the amount of the corresponding transcript, but had no effect on overall lipid content relative to the parental strain. Analysis of the expression of the native genes over time in the parental strain revealed that DGA2 transcript levels quadrupled between 8 and 24 h in the N-limited lipogenic medium, whereas DGA1 transcript levels remained stable. This survey highlights the predominant role of the DGAT1 family in lipid accumulation and demonstrates the suitability of B. raffinosifermentans for engineering for lipid production.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Metabolismo de los Lípidos , Saccharomycetales/genética , Secuencia de Aminoácidos , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/análisis , Microorganismos Modificados Genéticamente , Saccharomycetales/enzimología
8.
ACS Synth Biol ; 9(9): 2562-2575, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786349

RESUMEN

CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.


Asunto(s)
Edición Génica/métodos , Acil-CoA Oxidasa/genética , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Plásmidos/genética , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Yarrowia/enzimología
9.
Mycoses ; 63(7): 737-745, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32335966

RESUMEN

BACKGROUND: Yarrowia lipolytica belongs to the normal human microbiota but is also found in substrates with high contents in lipids and used in biotechnological processes. It is sometimes reported as human pathogen and especially in catheter-related candidaemia. OBJECTIVES: Two apparently grouped cases of infections and/or contamination were reported involving 3 and 9 patients, respectively, in two hospitals. The goal of this study was to design a molecular tool to study the genetic diversity of Y lipolytica and confirm or not the common source of contamination during these grouped cases. METHODS: Given that there is no genotyping method, we used genomic markers assessed on environmental isolates to determine intra-species relationship. We selected five highly polymorphic intergenic regions, totalling more than 3200 bp and sequenced them for clinical (n = 20) and environmental (n = 14) isolates. Antifungal susceptibility was determined by EUCAST broth microdilution method. RESULTS: Multiple alignment of the five sequences revealed divergence of 0%-5.8% between isolates as compared to approximately 0.2%-0.25% after alignment of whole genomes, suggesting their potential usefulness to establish genetic relatedness. The analysis showed the multiple origins of the isolates. It uncovered two grouped case of fungaemia involving 3 and 2 patients, respectively. It also revealed several unrelated sporadic cases despite their temporal relationship and one probable laboratory contamination by a common yet uncovered source, explaining several consecutive positive cultures without infection. All isolates had high minimal inhibitory concentration (MIC) for flucytosine, the majority (14/34) was susceptible to fluconazole, and all to the other antifungal agents tested. CONCLUSION: This method could help elucidate cases related to the opportunistic pathogen Y lipolytica.


Asunto(s)
Antifúngicos/farmacología , Brotes de Enfermedades , Variación Genética , Yarrowia/efectos de los fármacos , Yarrowia/genética , Microbiología Ambiental , Genoma Fúngico , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/microbiología , Análisis de Secuencia de ADN , Yarrowia/patogenicidad
10.
Genome Biol Evol ; 12(6): 795-807, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302403

RESUMEN

Genome-wide characterization of genetic variants of a large population of individuals within the same species is essential to have a deeper insight into its evolutionary history as well as the genotype-phenotype relationship. Population genomic surveys have been performed in multiple yeast species, including the two model organisms, Saccharomyces cerevisiae and Schizosaccharomyces pombe. In this context, we sought to characterize at the population level the Brettanomyces bruxellensis yeast species, which is a major cause of wine spoilage and can contribute to the specific flavor profile of some Belgium beers. We have completely sequenced the genome of 53 B. bruxellensis strains isolated worldwide. The annotation of the reference genome allowed us to define the gene content of this species. As previously suggested, our genomic data clearly highlighted that genetic diversity variation is related to ploidy level, which is variable in the B. bruxellensis species. Genomes are punctuated by multiple loss-of-heterozygosity regions, whereas aneuploidies as well as segmental duplications are uncommon. Interestingly, triploid genomes are more prone to gene copy number variation than diploids. Finally, the pangenome of the species was reconstructed and was found to be small with few accessory genes compared with S. cerevisiae. The pangenome is composed of 5,409 ORFs (open reading frames) among which 5,106 core ORFs and 303 ORFs that are variable within the population. All these results highlight the different trajectories of species evolution and consequently the interest of establishing population genomic surveys in more populations.


Asunto(s)
Brettanomyces/genética , Variación Genética , Genoma Fúngico , Ploidias , Pérdida de Heterocigocidad , Filogenia , Secuenciación Completa del Genoma
11.
Yeast ; 37(5-6): 348-355, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32212181

RESUMEN

Candida hispaniensis is an oleaginous yeast with a great potential for production of single cell oil according to its naturally high lipid accumulation capacity. Its unusual small genome size trait is also attractive for fundamental research on genome evolution. Our physiological study suggests a great potential for lipid production, reaching 224 mg/g of cell dry weight in glucose minimum medium. C. hispaniensis is also able to secrete up to 34.6 mg/L of riboflavin promising further riboflavin production improvements by cultivation optimization and genetic engineering. However, while its genome sequence has been released very recently, no genetic tools have been described up to now for this yeast limiting its use for fundamental research and for exploitation in an industrial biotechnology. We report here the first genetic modification of C. hispaniensis by introducing a heterologous invertase allowing the growth on sucrose using a biolistic transformation approach using a dedicated vector. The first genetic tool and transformation method developed here appear as a proof of concept, and while it would benefit from further optimization, heterogeneous expression of invertase allows for metabolism of an additional sugar and shows heterologous enzyme production capacity.


Asunto(s)
Candida/genética , Candida/metabolismo , Producto de la Acumulación de Lípidos , Lípidos/biosíntesis , Biotecnología , Candida/citología , Candida/enzimología , Glucosa/metabolismo , Metabolismo de los Lípidos , Riboflavina/biosíntesis , Transformación Genética , Yarrowia/genética , beta-Fructofuranosidasa
12.
Sci Rep ; 9(1): 13365, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527614

RESUMEN

Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5'-TTNNNNAGGG-3', with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5'-TTAGGG-3'. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.


Asunto(s)
Telomerasa/genética , Proteínas de Unión a Telómeros/genética , Yarrowia/genética , Evolución Biológica , Expansión de las Repeticiones de ADN/genética , Evolución Molecular , Proteínas Fúngicas/metabolismo , ARN/genética , Telomerasa/metabolismo , Telómero/metabolismo
13.
Biotechnol Biofuels ; 12: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249618

RESUMEN

BACKGROUND: In the context of sustainable development, yeast are one class of microorganisms foreseen for the production of oil from diverse renewable feedstocks, in particular those that do not compete with the food supply. However, their use in bulk production, such as for the production of biodiesel, is still not cost effective, partly due to the possible poor use of desired substrates or poor robustness in the practical bioconversion process. We investigated the natural capacity of Blastobotrys adeninivorans, a yeast already used in biotechnology, to store lipids under different conditions. RESULTS: The genotyping of seven strains showed the species to actually be composed of two different groups, one that (including the well-known strain LS3) could be reassigned to Blastobotrys raffinosifermentans. We showed that, under nitrogen limitation, strains of both species can synthesize lipids to over 20% of their dry-cell weight during shake-flask cultivation in glucose or xylose medium for 96 h. In addition, organic acids were excreted into the medium. LS3, our best lipid-producing strain, could also accumulate lipids from exogenous oleic acid, up to 38.1 ± 1.6% of its dry-cell weight, and synthesize lipids from various sugar substrates, up to 36.6 ± 0.5% when growing in cellobiose. Both species, represented by LS3 and CBS 8244T, could grow with little filamentation in the lipogenic medium from 28 to 45 °C and reached lipid titers ranging from 1.76 ± 0.28 to 3.08 ± 0.49 g/L in flasks. Under these conditions, the maximum bioconversion yield (Y FA/S = 0.093 ± 0.017) was obtained with LS3 at 37 °C. The presence of genes for predicted subunits of an ATP citrate lyase in the genome of LS3 reinforces its oleaginous character. CONCLUSIONS: Blastobotrys adeninivorans and B. raffinosifermentans, which are known to be xerotolerant and genetically-tractable, are promising biotechnological yeasts of the Saccharomycotina that could be further developed through genetic engineering for the production of microbial oil. To our knowledge, this is the first report of efficient lipid storage in yeast when cultivated at a temperature above 40 °C. This paves the way to help reducing costs through consolidated bioprocessing.

14.
Artículo en Inglés | MEDLINE | ID: mdl-30701247

RESUMEN

Here, we report the genome sequence of the oleaginous yeast Yarrowia lipolytica H222. De novo genome assembly shows three main chromosomal rearrangements compared to that of strain E150/CLIB122. This genomic resource will help integrate intraspecies diversity into synthetic biology projects that utilize Yarrowia as a biotechnological chassis for value-added chemical productions.

15.
Sci Rep ; 9(1): 849, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696855

RESUMEN

Since their divergence from Pezizomycotina, the mRNA metabolism of budding yeasts have undergone regressive evolution. With the dramatic loss of introns, a number of quality control mechanisms have been simplified or lost during evolution, such as the exon junction complex (EJC). We report the identification of the core EJC components, Mago, Y14, and eIF4A3, in at least seven Saccharomycotina species, including Yarrowia lipolytica. Peripheral factors that join EJC, either to mediate its assembly (Ibp160 or Cwc22), or trigger downstream processes, are present in the same species, forming an evolutionary package. Co-immunoprecipitation studies in Y. lipolytica showed that Mago and Y14 have retained the capacity to form heterodimers, which successively bind to the peripheral factors Upf3, Aly/REF, and Pym. Phenotypes and RNA-Seq analysis of EJC mutants showed evidence of Y14 and Mago involvement in mRNA metabolism. Differences in unspliced mRNA levels suggest that Y14 binding either interferes with pre-mRNA splicing or retains mRNA in the nucleus before their export and translation. These findings indicate that yeast could be a relevant model for understanding EJC function.


Asunto(s)
Núcleo Celular/metabolismo , Exones/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiología , Evolución Biológica , Dimerización , Unión Proteica , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Yeast ; 36(4): 167-175, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30645763

RESUMEN

All authors of the present paper have worked in labs that participated to the sequencing effort of the Saccharomyces cerevisiae reference genome, and we owe to this the fact that we have all chosen to work on genomics of yeasts. S. cerevisiae has been a popular model species for genetics since the 20th century as well as being a model for general eukaryotic cellular processes. Although it has also been used empirically in fermentation for millennia, there was until recently, a lack of knowledge about the natural and evolutionary history of this yeast. The achievement of the international effort to sequence its genome was the foundation for understanding many eukaryotic biological processes but also represented the first step towards the study of the genome and ecological diversity of yeast populations worldwide. We will describe recent advances in yeast comparative and population genomics that find their origins in the S. cerevisiae genome project initiated and pursued by André Goffeau.


Asunto(s)
Genoma Fúngico , Genómica/tendencias , Saccharomyces cerevisiae/genética , Fermentación , Variación Genética , Saccharomyces cerevisiae/metabolismo
17.
Front Microbiol ; 10: 2960, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010076

RESUMEN

Hanseniaspora, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species H. uvarum, H. opuntiae, H. guilliermondii, and H. pseudoguilliermondii. Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, H. guilliermondii strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between H. opuntiae and H. pseudoguilliermondii. Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that Hanseniaspora genomes are not only fast evolving but also highly dynamic.

18.
J Mol Biol ; 430(21): 4293-4306, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30227135

RESUMEN

Yarrowia lipolytica is an oleaginous yeast of growing industrial interest for biotechnological applications. In the last few years, genome edition has become an easier and more accessible prospect with the world wild spread development of CRISPR/Cas9 technology. In this study, we focused our attention on the production of the two key elements of the CRISPR-Cas9 ribonucleic acid protein complex in this non-conventional yeast. The efficiency of NHEJ-induced knockout was measured by time-course monitoring using multiple parameters flow cytometry, as well as phenotypic and genotypic observations, and linked to nuclease production levels showing that its strong overexpression is unnecessary. Thus, the limiting factor for the generation of a functional ribonucleic acid protein complex clearly resides in guide expression, which was probed by testing different linker lengths between the transfer RNA promoter and the sgRNA. The results highlight a clear deleterious effect of mismatching bases at the 5' end of the target sequence. For the first time in yeast, an investigation of its maturation from the primary transcript was undertaken by sequencing multiple sgRNAs extracted from the host. These data provide insights into of the yeast small RNA processing, from synthesis to maturation, and suggests a pathway for their degradation in Y. lipolytica. Subsequently, a whole-genome sequencing of a modified strain detected no abnormal modification due to off-target effects, confirming CRISPR/Cas9 as a safe strategy for editing Y. lipolytica genome. Finally, the optimized system was used to promote in vivo directed mutagenesis via homology-directed repair with a ssDNA oligonucleotide.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Yarrowia/genética , Genoma Fúngico , Regiones Promotoras Genéticas
19.
Genome Announc ; 6(26)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954910

RESUMEN

We report here the genome sequence of the ascomycetous yeast Torulaspora microellipsoides CLIB 830T A reference genome for this species, which has been found as a donor of genetic material in wine strains of Saccharomyces cerevisiae, will undoubtedly give clues to our understanding of horizontal transfer mechanisms between species in the wine environment.

20.
Sci Rep ; 7(1): 12507, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970528

RESUMEN

The gene YALI0F01562g was identified as an important factor involved in erythritol catabolism of the unconventional yeast Yarrowia lipolytica. Its putative role was identified for the first time by comparative analysis of four Y. lipolytica strains: A-101.1.31, Wratislavia K1, MK1 and AMM. The presence of a mutation that seriously damaged the gene corresponded to inability of the strain Wratislavia K1 to utilize erythritol. RT-PCR analysis of the strain MK1 demonstrated a significant increase in YALI0F01562g expression during growth on erythritol. Further studies involving deletion and overexpression of the selected gene showed that it is indeed essential for efficient erythritol assimilation. The deletion strain Y. lipolytica AMM∆euf1 was almost unable to grow on erythritol as the sole carbon source. When the strain was applied in the process of erythritol production from glycerol, the amount of erythritol remained constant after reaching the maximal concentration. Analysis of the YALI0F01562g gene sequence revealed the presence of domains characteristic for transcription factors. Therefore we suggest naming the studied gene Erythritol Utilization Factor - EUF1.


Asunto(s)
Eritritol/metabolismo , Proteínas Fúngicas/genética , Factores de Transcripción/genética , Yarrowia/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Expresión Génica , Prueba de Complementación Genética , Glicerol/metabolismo , Mutación , Factores de Transcripción/metabolismo , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...