Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inflamm Res ; 72(8): 1719-1731, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37537367

RESUMEN

OBJECTIVE AND DESIGN: Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS: 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS: Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS: We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION: Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.


Asunto(s)
COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina/fisiología
2.
Biochimie ; 212: 21-30, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36997147

RESUMEN

Thimet oligopeptidase (THOP) is a cytosolic metallopeptidase known to regulate the fate of post-proteasomal peptides, protein turnover and peptide selection in the antigen presentation machinery (APM) system. Oxidative stress influences THOP expression and regulates its proteolytic activity, generating variable cytosolic peptide levels, possibly affecting the immune evasion of tumor cells. In the present work, we examined the association between THOP expression/activity and stress oxidative resistance in human leukemia cells using the K562 cell line, a chronic myeloid leukemia (CML), and the multidrug-resistant (MDR) Lucena 1 (K562-derived MDR cell line) as model. The Lucena 1 phenotype was validated under vincristine treatment and the relative THOP1 mRNA levels and protein expression compared to K562 cell line. Our data demonstrated increased THOP1 gene and protein levels in K562 cells in contrast to the oxidative-resistant Lucena 1, even after H2O2 treatment, suggesting an oxidative stress dependence in THOP regulation. Further, it was observed higher basal levels of reactive oxygen species (ROS) in K562 compared to Lucena 1 cell line using DHE fluorescent probe. Since THOP activity is dependent on its oligomeric state, we also compared its proteolytic activity under reducing agent treatment, which demonstrated that its function modulation with respect to changes in redox state. Finally, the mRNA expression and FACS analyses demonstrated a reduced expression of MHC I only in K562 cell line. In conclusion, our results highlight THOP redox modulation, which could influence antigen presentation in multidrug resistant leukemia cells.


Asunto(s)
Peróxido de Hidrógeno , Leucemia , Humanos , Peróxido de Hidrógeno/farmacología , Resistencia a Antineoplásicos/genética , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/genética , Estrés Oxidativo , Péptidos , ARN Mensajero
3.
Front Physiol ; 13: 919544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117688

RESUMEN

Renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) have a different site of interaction and modulate vascular tone and inflammatory response as well on exercise adaptation, which is modulated by exercise-induced cytokines. The aim of the study was to evaluate the role of ACE I/D and BDKRB2 +9/-9 polymorphism on exercise-induced cytokine response. Seventy-four male marathon finishers, aged 30 to 55 years, participated in this study. Plasma levels of exercise-induced cytokines were determined 24 h before, immediately after, and 24 h and 72 h after the São Paulo International Marathon. Plasma concentrations of MCP-1, IL-6 and FGF-21 increased after marathon in all genotypes of BDKRB2. IL-10, FSTL and BDNF increased significantly after marathon in the genotypes with the presence of the -9 allele. FSTL and BDNF concentrations were higher in the -9/-9 genotype compared to the +9/+9 genotype before (p = 0.006) and after the race (p = 0.023), respectively. Apelin, IL-15, musclin and myostatin concentrations were significantly reduced after the race only in the presence of -9 allele. Marathon increased plasma concentrations of MCP1, IL-6, BDNF and FGF-21 in all genotypes of ACE I/D polymorphism. Plasma concentrations of IL-8 and MIP-1alpha before the race (p = 0.015 and p = 0.031, respectively), of MIP-1alpha and IL-10 after the race (p = 0.033 and p = 0.047, respectively) and VEGF 72 h after the race (p = 0.018) were lower in II homozygotes compared to runners with the presence of D allele. One day after the race we also observed lower levels of MIP-1alpha in runners with II homozygotes compared to DD homozygotes (p = 0.026). Before the marathon race myostatin concentrations were higher in DD compared to II genotypes (p = 0.009). Myostatin, musclin, IL-15, IL-6 and apelin levels decreased after race in genotypes with the presence of D allele. After the race ACE activity was negatively correlated with MCP1 (r = -56, p < 0.016) and positively correlated with IL-8, IL-10 and MIP1-alpha (r = 0.72, p < 0.0007, r = 0.72, p < 0.0007, r = 0.47, p < 0.048, respectively). The runners with the -9/-9 genotype have greater response in exercise-induced cytokines related to muscle repair and cardioprotection indicating that BDKRB2 participate on exercise adaptations and runners with DD genotype have greater inflammatory response as well as ACE activity was positively correlated with inflammatory mediators. DD homozygotes also had higher myostatin levels which modulates protein homeostasis.

4.
Bioorg Chem ; 109: 104662, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626452

RESUMEN

Two new series of hitherto unknown dipeptides, containing an electrophilic nitrile or a non-electrophilic 2-amino-1,3,4-oxadiazole moiety were synthesized and evaluated in vitro as Cathepsin K (Cat K) inhibitors. From 14 compounds obtained, the oxadiazole derivatives 10a, 10b, 10e, and 10g acted as enzymatic competitive inhibitors with Ki values between 2.13 and 7.33 µM. Molecular docking calculations were carried out and demonstrated that all inhibitors performed hydrogen bonds with residues from the enzyme active site, such as Asn18. The best inhibitors (10a, 10b, 10g) could also perform these bonds with Cys25, and 10a showed the most stabilizing interaction energy (-134.36 kcal mol-1) with the active cavity. For the first time, derivatives based in 2-amino-1,3,4-oxadiazole scaffolds were evaluated, and the results suggested that this core displays a remarkable potential as a building block for Cat K inhibitors.


Asunto(s)
Catepsina K/antagonistas & inhibidores , Dipéptidos/farmacología , Oxadiazoles/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Dipéptidos/síntesis química , Dipéptidos/química , Diseño de Fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Moleculares , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA