Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Biol Chem ; 298(6): 101956, 2022 06.
Article En | MEDLINE | ID: mdl-35452674

The signaling pathways and cellular functions regulated by the four Numb-associated kinases are largely unknown. We reported that AAK1 and GAK control intracellular trafficking of RNA viruses and revealed a requirement for BIKE in early and late stages of dengue virus (DENV) infection. However, the downstream targets phosphorylated by BIKE have not yet been identified. Here, to identify BIKE substrates, we conducted a barcode fusion genetics-yeast two-hybrid screen and retrieved publicly available data generated via affinity-purification mass spectrometry. We subsequently validated 19 of 47 putative BIKE interactors using mammalian cell-based protein-protein interaction assays. We found that CLINT1, a cargo-specific adapter implicated in bidirectional Golgi-to-endosome trafficking, emerged as a predominant hit in both screens. Our experiments indicated that BIKE catalyzes phosphorylation of a threonine 294 CLINT1 residue both in vitro and in cell culture. Our findings revealed that CLINT1 phosphorylation mediates its binding to the DENV nonstructural 3 protein and subsequently promotes DENV assembly and egress. Additionally, using live-cell imaging we revealed that CLINT1 cotraffics with DENV particles and is involved in mediating BIKE's role in DENV infection. Finally, our data suggest that additional cellular BIKE interactors implicated in the host immune and stress responses and the ubiquitin proteasome system might also be candidate phosphorylation substrates of BIKE. In conclusion, these findings reveal cellular substrates and pathways regulated by the understudied Numb-associated kinase enzyme BIKE, a mechanism for CLINT1 regulation, and control of DENV infection via BIKE signaling, with potential implications for cell biology, virology, and host-targeted antiviral design.


Dengue Virus , Dengue , Animals , Dengue/metabolism , Dengue Virus/metabolism , Humans , Phosphorylation , Two-Hybrid System Techniques , Virus Replication
2.
mBio ; 13(2): e0288821, 2022 04 26.
Article En | MEDLINE | ID: mdl-35389262

Chronic hepatitis B virus (HBV) infection persists due to the lack of therapies that effectively target the HBV covalently closed circular DNA (cccDNA). We used HBV-specific guide RNAs (gRNAs) and CRISPR-Cas9 and determined the fate of cccDNA after gene editing. We set up a ribonucleoprotein (RNP) delivery system in HBV-infected HepG2-NTCP cells. HBV parameters after Cas9 editing were analyzed. Southern blot (SB) analysis and DNA/RNA sequencing (DNA/RNA-seq) were performed to determine the consequences of cccDNA editing and transcriptional activity of mutated cccDNA. Treatment of infected cells with HBV-specific gRNAs showed that CRISPR-Cas9 can efficiently affect HBV replication. The appearance of episomal HBV DNA variants after dual gRNA treatment was observed by PCR, SB analysis, and DNA/RNA-seq. These transcriptionally active variants are the products of simultaneous Cas9-induced double-strand breaks in two target sites, followed by repair and religation of both short and long fragments. Following suppression of HBV DNA replicative intermediates by nucleoside analogs, mutations and formation of smaller transcriptionally active HBV variants were still observed, suggesting that established cccDNA is accessible to CRISPR-Cas9 editing. Targeting HBV DNA with CRISPR-Cas9 leads to cleavage followed by appearance of episomal HBV DNA variants. Effects induced by Cas9 were sustainable after RNP degradation/loss of detection, suggesting permanent changes in the HBV genome instead of transient effects due to transcriptional interference. IMPORTANCE Hepatitis B virus infection can develop into chronic infection, cirrhosis, and hepatocellular carcinoma. Treatment of chronic hepatitis B requires novel approaches to directly target the viral minichromosome, which is responsible for the persistence of the disease. Designer nuclease approaches represent a promising strategy to treat chronic infectious diseases; however, comprehensive knowledge about the fate of the HBV minichromosome is needed before this potent tool can be used as a potential therapeutic approach. This study provides an in-depth analysis of CRISPR-Cas9 targeting of HBV minichromosome.


Hepatitis B virus , Hepatitis B, Chronic , CRISPR-Cas Systems , DNA, Circular/genetics , DNA, Viral/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , RNA, Guide, Kinetoplastida/genetics
3.
PLoS Pathog ; 16(9): e1008850, 2020 09.
Article En | MEDLINE | ID: mdl-32956404

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that has become a serious threat to the public health. CCHFV has a single-stranded, tripartite RNA genome composed of L, M, and S segments. Cleavage of the M polyprotein precursor generates the two envelope glycoproteins (GPs) as well as three secreted nonstructural proteins GP38 and GP85 or GP160, representing GP38 only or GP38 linked to a mucin-like protein (MLD), and a double-membrane-spanning protein called NSm. Here, we examined the relevance of each M-segment non-structural proteins in virus assembly, egress and infectivity using a well-established CCHFV virus-like-particle system (tc-VLP). Deletion of MLD protein had no impact on infectivity although it reduced by 60% incorporation of GPs into particles. Additional deletion of GP38 abolished production of infectious tc-VLPs. The loss of infectivity was associated with impaired Gc maturation and exclusion from the Golgi, showing that Gn is not sufficient to target CCHFV GPs to the site of assembly. Consistent with this, efficient complementation was achieved in cells expressing MLD-GP38 in trans with increased levels of preGc to Gc conversion, co-targeting to the Golgi, resulting in particle incorporation and restored infectivity. Contrastingly, a MLD-GP38 variant retained in the ER allowed preGc cleavage but failed to rescue miss-localization or infectivity. NSm deletion, conversely, did not affect trafficking of Gc but interfered with Gc processing, particle formation and secretion. NSm expression affected N-glycosylation of different viral proteins most likely due to increased speed of trafficking through the secretory pathway. This highlights a potential role of NSm in overcoming Golgi retention and facilitating CCHFV egress. Thus, deletions of GP38 or NSm demonstrate their important role on CCHFV particle production and infectivity. GP85 is an essential viral factor for preGc cleavage, trafficking and Gc incorporation into particles, whereas NSm protein is involved in CCHFV assembly and virion secretion.


Hemorrhagic Fever Virus, Crimean-Congo/physiology , Viral Structural Proteins , Virus Assembly , Cell Line, Tumor , Gene Deletion , Humans , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
4.
J Hepatol ; 73(1): 40-51, 2020 07.
Article En | MEDLINE | ID: mdl-32087349

BACKGROUND & AIMS: Covalently closed circular DNA (cccDNA) is the episomal form of the HBV genome that stably resides in the nucleus of infected hepatocytes. cccDNA is the template for the transcription of 6 major viral RNAs, i.e. preC, pg, preS1/2, S and HBx RNA. All viral transcripts share the same 3' end and are all to various degrees subsets of each other. Especially under infection conditions, it has been difficult to study in depth the transcription of the different viral transcripts. We thus wanted to develop a method with which we could easily detect the full spectrum of viral RNAs in any lab. METHODS: We set up an HBV full-length 5'RACE (rapid amplification of cDNA ends) method with which we measured and characterized the full spectrum of viral RNAs in cell culture and in chronically infected patients. RESULTS: In addition to canonical HBx transcripts coding for full-length X, we identified shorter HBx transcripts potentially coding for short X proteins. We showed that interferon-ß treatment leads to a strong reduction of preC and pgRNAs but has only a moderate effect on the other viral transcripts. We found pgRNA, 1 spliced pgRNA variant and a variety of HBx transcripts associated with viral particles generated by HepAD38 cells. The different HBx RNAs are both capped and uncapped. Lastly, we identified 3 major categories of circulating RNA species in patients with chronic HBV infection: pgRNA, spliced pgRNA variants and HBx. CONCLUSIONS: This HBV full-length 5'RACE method should significantly contribute to the understanding of HBV transcription during the course of infection and therapy and may guide the development of novel therapies aimed at targeting cccDNA. LAY SUMMARY: Especially under infection conditions, it has been difficult to study the different hepatitis B virus transcripts in depth. This study introduces a new method that can be used in any standard lab to discriminate all hepatitis B viral transcripts in cell culture and in the serum of patients.


Hepatitis B virus , Hepatitis B , Hepatocytes/virology , Nucleic Acid Amplification Techniques/methods , DNA, Viral/analysis , Gene Expression Profiling/methods , Hepatitis B/blood , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Humans , Transcriptome
5.
mBio ; 9(2)2018 03 13.
Article En | MEDLINE | ID: mdl-29535204

Hepatitis C virus (HCV) spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs) AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the µ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2) protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread.IMPORTANCE HCV spreads via cell-free infection or cell-to-cell contact that shields it from antibody neutralization, thereby facilitating viral persistence. Yet, factors governing this differential sorting remain unknown. By integrating proteomic, RNA interference, genetic, live-cell imaging, and pharmacological approaches, we uncover differential coopting of host adaptor proteins (APs) to mediate HCV traffic at distinct late steps of the viral life cycle. We reported that AP-1A and AP-2 mediate HCV trafficking during release and assembly, respectively. Here, we demonstrate that dileucine motifs in the NS2 protein mediate AP-1A, AP-1B, and AP-4 binding and cell-free virus release. Moreover, we reveal that AP-4, an adaptor not previously implicated in viral infections, mediates cell-to-cell spread and HCV trafficking. Lastly, we demonstrate cell-to-cell spread regulation by AAK1 and GAK, host kinases controlling APs, and susceptibility to their inhibitors. This study provides mechanistic insights into virus-host determinants that facilitate HCV trafficking, with potential implications for pathogenesis and antiviral agent design.


Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex 4/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Virus Release , Cell Line , Humans , Immunoprecipitation , Protein Binding , Protein Interaction Mapping
7.
J Clin Invest ; 127(4): 1338-1352, 2017 Apr 03.
Article En | MEDLINE | ID: mdl-28240606

Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells. Moreover, we found that multiple viruses, including dengue and Ebola, exploit AAK1 and GAK during entry and infectious virus production. In cultured cells, treatment with sunitinib and erlotinib, approved anticancer drugs that inhibit AAK1 or GAK activity, or with more selective compounds inhibited intracellular trafficking of HCV and multiple unrelated RNA viruses with a high barrier to resistance. In murine models of dengue and Ebola infection, sunitinib/erlotinib combination protected against morbidity and mortality. We validated sunitinib- and erlotinib-mediated inhibition of AAK1 and GAK activity as an important mechanism of antiviral action. Additionally, we revealed potential roles for additional kinase targets. These findings advance our understanding of virus-host interactions and establish a proof of principle for a repurposed, host-targeted approach to combat emerging viruses.


Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Erlotinib Hydrochloride/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex 2/metabolism , Animals , Cell Line, Tumor , Dengue/prevention & control , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/metabolism , Drug Evaluation, Preclinical , Drug Synergism , Ebolavirus/drug effects , Ebolavirus/metabolism , Female , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Hepacivirus/drug effects , Hepacivirus/metabolism , Hepatitis C/prevention & control , Hepatitis C/virology , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice, 129 Strain , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Sunitinib , Virus Internalization/drug effects
8.
mBio ; 7(6)2016 11 01.
Article En | MEDLINE | ID: mdl-27803188

Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. IMPORTANCE: Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether envelopment of HCV and other viruses lacking defined late domains is ESCRT mediated and, if so, what the entry points into the ESCRT pathway are remain unknown. Here, we report the interaction network of HCV with the ESCRT machinery and a critical role for HRS, an ESCRT-0 complex component, in HCV envelopment. Viral protein ubiquitination was discovered to be a signal for HRS binding and HCV assembly, thereby functionally compensating for the absence of late domains. These findings characterize how a virus lacking defined late domains co-opts ESCRT to bud intracellularly. Since the ESCRT machinery is essential for the life cycle of multiple viruses, better understanding of this virus-host interplay may yield targets for broad-spectrum antiviral therapies.


Endosomal Sorting Complexes Required for Transport/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Virus Assembly , Virus Release , Protein Interaction Mapping , Ubiquitination
9.
PLoS Biol ; 14(3): e1002421, 2016 Mar.
Article En | MEDLINE | ID: mdl-27031829

Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species.


ErbB Receptors/metabolism , Hepatitis C/metabolism , Nerve Growth Factors/metabolism , Tumor Suppressor Proteins/metabolism , Autoantigens/metabolism , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Cell Line , Cell Transformation, Neoplastic , Hepatitis C/complications , Hepatitis C/virology , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/virology , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Netrin-1 , Ribonucleoproteins/metabolism , Up-Regulation , Viral Nonstructural Proteins/metabolism , Virus Internalization , SS-B Antigen
10.
Proc Natl Acad Sci U S A ; 113(16): 4344-9, 2016 Apr 19.
Article En | MEDLINE | ID: mdl-27044079

The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.


Microfluidic Analytical Techniques/methods , Protein Array Analysis/methods , Proteomics/methods , Receptors, Virus/metabolism , Simian virus 40/metabolism , Humans
11.
J Med Chem ; 58(8): 3393-410, 2015 Apr 23.
Article En | MEDLINE | ID: mdl-25822739

Cyclin G associated kinase (GAK) emerged as a promising drug target for the treatment of viral infections. However, no potent and selective GAK inhibitors have been reported in the literature to date. This paper describes the discovery of isothiazolo[5,4-b]pyridines as selective GAK inhibitors, with the most potent congeners displaying low nanomolar binding affinity for GAK. Cocrystallization experiments revealed that these compounds behaved as classic type I ATP-competitive kinase inhibitors. In addition, we have demonstrated that these compounds exhibit a potent activity against hepatitis C virus (HCV) by inhibiting two temporally distinct steps in the HCV life cycle (i.e., viral entry and assembly). Hence, these GAK inhibitors represent chemical probes to study GAK function in different disease areas where GAK has been implicated (including viral infection, cancer, and Parkinson's disease).


Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Cell Line , Crystallography, X-Ray , Hepacivirus/physiology , Hepatitis C/enzymology , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Virus Internalization/drug effects
12.
J Virol ; 89(8): 4387-404, 2015 Apr.
Article En | MEDLINE | ID: mdl-25653444

UNLABELLED: Hepatitis C virus (HCV) enters its target cell via clathrin-mediated endocytosis. AP-2-associated protein kinase 1 (AAK1) and cyclin G-associated kinase (GAK) are host kinases that regulate clathrin adaptor protein (AP)-mediated trafficking in the endocytic and secretory pathways. We previously reported that AAK1 and GAK regulate HCV assembly by stimulating binding of the µ subunit of AP-2, AP2M1, to HCV core protein. We also discovered that AAK1 and GAK inhibitors, including the approved anticancer drugs sunitinib and erlotinib, could block HCV assembly. Here, we hypothesized that AAK1 and GAK regulate HCV entry independently of their effect on HCV assembly. Indeed, silencing AAK1 and GAK expression inhibited entry of pseudoparticles and cell culture grown-HCV and internalization of Dil-labeled HCV particles with no effect on HCV attachment or RNA replication. AAK1 or GAK depletion impaired epidermal growth factor (EGF)-mediated enhanced HCV entry and endocytosis of EGF receptor (EGFR), an HCV entry cofactor and erlotinib's cancer target. Moreover, either RNA interference-mediated depletion of AP2M1 or NUMB, each a substrate of AAK1 and/or GAK, or overexpression of either an AP2M1 or NUMB phosphorylation site mutant inhibited HCV entry. Last, in addition to affecting assembly, sunitinib and erlotinib inhibited HCV entry at a postbinding step, their combination was synergistic, and their antiviral effect was reversed by either AAK1 or GAK overexpression. Together, these results validate AAK1 and GAK as critical regulators of HCV entry that function in part by activating EGFR, AP2M1, and NUMB and as the molecular targets underlying the antiviral effect of sunitinib and erlotinib (in addition to EGFR), respectively. IMPORTANCE: Understanding the host pathways hijacked by HCV is critical for developing host-centered anti-HCV approaches. Entry represents a potential target for antiviral strategies; however, no FDA-approved HCV entry inhibitors are currently available. We reported that two host kinases, AAK1 and GAK, regulate HCV assembly. Here, we provide evidence that AAK1 and GAK regulate HCV entry independently of their role in HCV assembly and define the mechanisms underlying AAK1- and GAK-mediated HCV entry. By regulating temporally distinct steps in the HCV life cycle, AAK1 and GAK represent "master regulators" of HCV infection and potential targets for antiviral strategies. Indeed, approved anticancer drugs that potently inhibit AAK1 or GAK inhibit HCV entry in addition to assembly. These results contribute to an understanding of the mechanisms of HCV entry and reveal attractive host targets for antiviral strategies as well as approved candidate inhibitors of these targets, with potential implications for other viruses that hijack clathrin-mediated pathways.


Hepacivirus/physiology , Hepatitis C/physiopathology , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Virus Internalization , Blotting, Western , Cell Line , Erlotinib Hydrochloride , Hepatitis C/metabolism , Humans , Indoles/pharmacology , Luciferases , Microscopy, Fluorescence , Plasmids/genetics , Pyrroles/pharmacology , Quinazolines/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Sunitinib
13.
Methods Mol Biol ; 1282: 213-29, 2015.
Article En | MEDLINE | ID: mdl-25720483

Over the last 2 decades, yeast two-hybrid became an invaluable technique to decipher protein-protein interaction networks. In the field of virology, it has proven instrumental to identify virus-host interactions that are involved in viral embezzlement of cellular functions and inhibition of immune mechanisms. Here, we present a yeast two-hybrid protocol that has been used in our laboratory since 2006 to search for cellular partners of more than 300 viral proteins. Our aim was to develop a robust and straightforward pipeline, which minimizes false-positive interactions with a decent coverage of target cDNA libraries, and only requires a minimum of equipment. We also discuss reasons that motivated our technical choices and compromises that had to be made. This protocol has been used to screen most non-structural proteins of murine hepatitis virus (MHV), a member of betacoronavirus genus, against a mouse brain cDNA library. Typical results were obtained and are presented in this report.


Murine hepatitis virus/physiology , Nerve Tissue Proteins/metabolism , Two-Hybrid System Techniques , Viral Proteins/metabolism , Animals , Host-Pathogen Interactions , Mice , Virus Attachment
14.
Methods ; 58(4): 349-59, 2012 Dec.
Article En | MEDLINE | ID: mdl-22898364

Comparative interactomics is a strategy for inferring potential interactions among orthologous proteins or "interologs". Herein we focus, in contrast to standard homology-based inference, on the divergence of protein interaction profiles among closely related organisms, showing that the approach can correlate specific traits to phenotypic differences. As a model, this new comparative interactomic approach was applied at a large scale to human papillomaviruses (HPVs) proteins. The oncogenic potential of HPVs is mainly determined by the E6 and E7 early proteins. We have mapped and overlapped the virus-host protein interaction networks of E6 and E7 proteins from 11 distinct HPV genotypes, selected for their different tropisms and pathologies. We generated robust and comprehensive datasets by combining two orthogonal protein interaction assays: yeast two-hybrid (Y2H), and our recently described "high-throughput Gaussia princeps protein complementation assay" (HT-GPCA). HT-GPCA detects protein interaction by measuring the interaction-mediated reconstitution of activity of a split G. princeps luciferase. Hierarchical clustering of interaction profiles recapitulated HPV phylogeny and was used to correlate specific virus-host interaction profiles with pathological traits, reflecting the distinct carcinogenic potentials of different HPVs. This comparative interactomics constitutes a reliable and powerful strategy to decipher molecular relationships in virtually any combination of microorganism-host interactions.


Alphapapillomavirus/physiology , Host-Pathogen Interactions , Luciferases/genetics , Plant Proteins/genetics , Two-Hybrid System Techniques , Alphapapillomavirus/genetics , Arecaceae/enzymology , Biomarkers/metabolism , Cluster Analysis , Genotype , HEK293 Cells , Humans , Luciferases/biosynthesis , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Phylogeny , Plant Proteins/biosynthesis , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Proteome/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Viral Tropism
15.
PLoS Pathog ; 8(8): e1002845, 2012.
Article En | MEDLINE | ID: mdl-22916011

Novel therapies are urgently needed against hepatitis C virus infection (HCV), a major global health problem. The current model of infectious virus production suggests that HCV virions are assembled on or near the surface of lipid droplets, acquire their envelope at the ER, and egress through the secretory pathway. The mechanisms of HCV assembly and particularly the role of viral-host protein-protein interactions in mediating this process are, however, poorly understood. We identified a conserved heretofore unrecognized YXXΦ motif (Φ is a bulky hydrophobic residue) within the core protein. This motif is homologous to sorting signals within host cargo proteins known to mediate binding of AP2M1, the µ subunit of clathrin adaptor protein complex 2 (AP-2), and intracellular trafficking. Using microfluidics affinity analysis, protein-fragment complementation assays, and co-immunoprecipitations in infected cells, we show that this motif mediates core binding to AP2M1. YXXΦ mutations, silencing AP2M1 expression or overexpressing a dominant negative AP2M1 mutant had no effect on HCV RNA replication, however, they dramatically inhibited intra- and extracellular infectivity, consistent with a defect in viral assembly. Quantitative confocal immunofluorescence analysis revealed that core's YXXΦ motif mediates recruitment of AP2M1 to lipid droplets and that the observed defect in HCV assembly following disruption of core-AP2M1 binding correlates with accumulation of core on lipid droplets, reduced core colocalization with E2 and reduced core localization to trans-Golgi network (TGN), the presumed site of viral particles maturation. Furthermore, AAK1 and GAK, serine/threonine kinases known to stimulate binding of AP2M1 to host cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, approved anti-cancer drugs that inhibit AAK1 or GAK not only disrupt core-AP2M1 binding, but also significantly inhibit HCV assembly and infectious virus production. These results validate viral-host interactions essential for HCV assembly and yield compounds for pharmaceutical development.


Adaptor Protein Complex 2/metabolism , Hepacivirus/physiology , Hepatitis C/metabolism , Host-Pathogen Interactions , Viral Core Proteins/metabolism , Virus Assembly/physiology , Adaptor Protein Complex 2/genetics , Amino Acid Motifs , Cell Line , Hepatitis C/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Viral Core Proteins/genetics , trans-Golgi Network/genetics , trans-Golgi Network/metabolism , trans-Golgi Network/virology
...