Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article En | MEDLINE | ID: mdl-38892225

Small extracellular vesicles (sEVs) have been shown to promote tumorigenesis, treatment resistance, and metastasis in multiple cancer types; however, sEVs in the aqueous humor (AH) of uveal melanoma (UM) patients have never previously been profiled. In this study, we used single particle analysis to characterize sEV subpopulations in the AH of UM patients by quantifying their size, concentration, and phenotypes based on cell surface markers, specifically the tetraspanin co-expression patterns of CD9, CD63, and CD81. sEVs were analyzed from paired pre- and post-treatment (brachytherapy, a form of radiation) AH samples collected from 19 UM patients. In post-brachytherapy samples, two subpopulations, CD63/81+ and CD9/63/81+ sEVs, were significantly increased. These trends existed even when stratified by tumor location and GEP class 1 and class 2 (albeit not significant for GEP class 2). In this initial report of single vesicle profiling of sEVs in the AH of UM patients, we demonstrated that sEVs can be detected in the AH. We further identified two subpopulations that were increased post-brachytherapy, which may suggest radiation-induced release of these particles, potentially from tumor cells. Further study of the cargo carried by these sEV subpopulations may uncover important biomarkers and insights into tumorigenesis for UM.


Aqueous Humor , Brachytherapy , Extracellular Vesicles , Melanoma , Uveal Neoplasms , Humans , Uveal Neoplasms/radiotherapy , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Extracellular Vesicles/metabolism , Melanoma/radiotherapy , Melanoma/metabolism , Melanoma/pathology , Aqueous Humor/metabolism , Aqueous Humor/radiation effects , Female , Male , Middle Aged , Aged , Biomarkers, Tumor/metabolism , Adult , Aged, 80 and over
2.
Chemistry ; 29(55): e202301508, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37435754

New nitroxides based on aza-crown ethers were prepared and employed as selective sensors for the detection of inorganic and organic cations by EPR analysis of the corresponding host-guest complexes. The nitroxide unit behaves as a sensitive probe for a number of alkali and alkaline earth metal cations affording EPR spectra differing in the value of nitrogen hyperfine constants and in the appearance of splitted signals due to the non-zero nuclear spin of some metal cation upon complexation. Owing to the remarkable EPR spectral differences between the host and the corresponding cation complex the new macrocycles are likely to act as multitasking tools to recognize several cationic species. EPR behaviour of the larger nitroxide azacrown 1⋅ when acting as a wheel in a radical synthetic bistable [2]rotaxane containing both secondary dialkylammonium and 1,2-bis(pyridinium) molecular stations, was also investigated. Reversible movements of the macrocycle between the two recognition sites in the rotaxane were promptly revealed by EPR, which shows significant changes either in nitrogen coupling constant values (aN ) or in the spectral shape in the two rotaxane co-conformations.

3.
Invest Ophthalmol Vis Sci ; 64(10): 5, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37410475

Purpose: Although biopsy is contraindicated in retinoblastoma (RB), the aqueous humor (AH) is a robust liquid biopsy source of molecular tumor information, facilitating biomarker discovery. Small extracellular vesicles (sEVs), promising biomarker candidates across multiple cancers, were recently identified in RB AH, but relationships between sEVs and RB clinical features are unknown. Methods: We analyzed sEVs in 37 AH samples from 18 RB eyes of varying International Intraocular Retinoblastoma Classification (IIRC) groups and explored clinical correlations. Ten samples were collected at diagnosis (DX) and 27 during treatment (Tx). Unprocessed AH underwent Single Particle-Interferometric Reflectance Imaging Sensor (SP-IRIS) analysis for fluorescent particle count and tetraspanin immunophenotyping; counts were subsequentially converted to percentages for analysis. Results: Comparing DX and Tx samples, a higher percentage of CD63/81+ sEVs was found in DX AH (16.3 ± 11.6% vs. 5.49 ± 3.67% P = 0.0009), with a more homogenous mono-CD63+ sEV population seen in Tx AH (43.5 ± 14.7% vs. 28.8 ± 9.38%, P = 0.0073). Among DX samples, CD63/81+ sEVs were most abundant in group E eyes (n = 2) compared to group D (n = 6) by count (2.75 × 105 ± 3.40 × 105 vs. 5.95 × 103 ± 8.16 × 103, P = 0.0006), and to group A + B (n = 2) by count (2.75 × 105 ± 3.40 × 105 vs. 2.73 × 102 ± 2.59 × 102, P = 0.0096) and percentage (32.1 ± 7.98% vs. 7.79 ± 0.02%, P = 0.0187). Conclusions: CD63/81+ sEVs enrich AH from RB eyes before treatment and those with more significant tumor burden, suggesting they are tumor-derived. Future research into their cargo may reveal mechanisms of cellular communication via sEVs in RB and novel biomarkers.


Extracellular Vesicles , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/diagnosis , Aqueous Humor , Biomarkers , Retinal Neoplasms/diagnosis , Tetraspanin 30
4.
J Extracell Vesicles ; 12(5): e12326, 2023 05.
Article En | MEDLINE | ID: mdl-37194998

The capture of tumour-derived extracellular vesicles (TEVs) by cells in the tumour microenvironment (TME) contributes to metastasis and notably to the formation of the pre-metastatic niche (PMN). However, due to the challenges associated with modelling release of small EVs in vivo, the kinetics of PMN formation in response to endogenously released TEVs have not been examined. Here, we have studied the endogenous release of TEVs in mice orthotopically implanted with metastatic human melanoma (MEL) and neuroblastoma (NB) cells releasing GFP-tagged EVs (GFTEVs) and their capture by host cells to demonstrate the active contribution of TEVs to metastasis. Human GFTEVs captured by mouse macrophages in vitro resulted in transfer of GFP vesicles and the human exosomal miR-1246. Mice orthotopically implanted with MEL or NB cells showed the presence of TEVs in the blood between 5 and 28 days after implantation. Moreover, kinetic analysis of TEV capture by resident cells relative to the arrival and outgrowth of TEV-producing tumour cells in metastatic organs demonstrated that the capture of TEVs by lung and liver cells precedes the homing of metastatic tumour cells, consistent with the critical roles of TEVs in PMN formation. Importantly, TEV capture at future sites of metastasis was associated with the transfer of miR-1246 to lung macrophages, liver macrophages, and stellate cells. This is the first demonstration that the capture of endogenously released TEVs is organotropic as demonstrated by the presence of TEV-capturing cells only in metastatic organs and their absence in non-metastatic organs. The capture of TEVs in the PMN induced dynamic changes in inflammatory gene expression which evolved to a pro-tumorigenic reaction as the niche progressed to the metastatic state. Thus, our work describes a novel approach to TEV tracking in vivo that provides additional insights into their role in the earliest stages of metastatic progression.


Extracellular Vesicles , Melanoma , MicroRNAs , Humans , Animals , Mice , Extracellular Vesicles/metabolism , Kinetics , MicroRNAs/metabolism , Melanoma/metabolism , Inflammation/metabolism , Tumor Microenvironment
5.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article En | MEDLINE | ID: mdl-36555738

Breast cancer is the leading cause of cancer incidence worldwide and among the five leading causes of cancer mortality. Despite major improvements in early detection and new treatment approaches, the need for better outcomes and quality of life for patients is still high. Extracellular vesicles play an important role in tumor biology, as they are able to transfer information between cells of different origins and locations. Their potential value as biomarkers or for targeted tumor therapy is apparent. In this study, we analyzed the supernatants of MCF-7 breast cancer cells, which were harvested following 5 or 10 days of simulated microgravity on a Random Positioning Machine (RPM). The primary results showed a substantial increase in released vesicles following incubation under simulated microgravity at both time points. The distribution of subpopulations regarding their surface protein expression is also altered; the minimal changes between the time points hint at an early adaption. This is the first step in gaining further insight into the mechanisms of tumor progression, metastasis, the education of the tumor microenvironments, and preparation of the metastatic niche. Additionally, this may lighten up the processes of the rapid cellular adaptions in the organisms of space travelers during spaceflights.


Breast Neoplasms , Extracellular Vesicles , Space Flight , Weightlessness , Humans , Female , Quality of Life , Weightlessness Simulation , Tumor Microenvironment
6.
J Extracell Biol ; 1(4)2022 Apr.
Article En | MEDLINE | ID: mdl-36339649

Aqueous humor (AH), the clear fluid in front of the eye, maintains the pressure and vitality of ocular tissues. This fluid is accessible via the clear cornea which enables use of AH as a liquid biopsy source of biomarkers for intraocular disease. Extracellular vesicles are detectable in the AH and small extracellular vesicles (sEVs) are present in the AH from adults. However, EVs in AH from pediatric eyes in vivo have never previously been explored. We know very little about the heterogeneity of AH EV populations in ocular disease. Twenty-seven processing-free AH samples from 19 patients across four different pediatric ocular diseases were subjected to Nanoparticle Tracking Analysis (NTA) and Single Particle-Interferometric Reflectance Imaging Sensor (SP-IRIS) analysis. NTA demonstrated the concentration of AH EV/EPs is 3.11 × 109-1.38 × 1010 particles/ml; the majority sized 76.8-103 nm. SP-IRIS revealed distinct patterns of tetraspanin expression of AH sEVs. An enriched mono-CD63+ sEV subpopulation identified in AH indicates this is a potential AH-specific biomarker. In the setting of retinoblastoma there was a more heterogeneous population of sEVs which normalized with treatment. This suggests a potential clinical application of direct measurement of sEV subpopulations in AH samples to monitor successful tumor response to therapy.

7.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article En | MEDLINE | ID: mdl-34948154

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. METHODS: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. RESULTS: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16-erlotinib regimen is more effective than the selumetinib-erlotinib combination in KRAS-mutated NSCLC. CONCLUSIONS: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.


Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , MAP Kinase Kinase Kinases , MicroRNAs , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras) , RNA, Neoplasm , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/biosynthesis , MicroRNAs/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article En | MEDLINE | ID: mdl-34884646

As much as space travel and exploration have been a goal since humankind looked up to the stars, the challenges coming with it are manifold and difficult to overcome. Therefore, researching the changes the human organism undergoes following exposure to weightlessness, on a cellular or a physiological level, is imperative to reach the goal of exploring space and new planets. Building on the results of our CellBox-1 experiment, where thyroid cancer cells were flown to the International Space Station, we are now taking advantage of the newest technological opportunities to gain more insight into the changes in cell-cell communication of these cells. Analyzing the exosomal microRNA composition after several days of microgravity might elucidate some of the proteomic changes we have reported earlier. An array scan of a total of 754 miRNA targets revealed more than 100 differentially expressed miRNAs in our samples, many of which have been implicated in thyroid disease in other studies.


Exosomes/genetics , Extraterrestrial Environment , MicroRNAs/metabolism , Thyroid Neoplasms/genetics , Weightlessness , Cell Line, Tumor , Exosomes/metabolism , Humans , MicroRNAs/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
9.
Int J Mol Sci ; 22(4)2021 Feb 21.
Article En | MEDLINE | ID: mdl-33669943

Space travel has always been the man's ultimate destination. With the ability of spaceflight though, came the realization that exposure to microgravity has lasting effects on the human body. To counteract these, many studies were and are undertaken, on multiple levels. Changes in cell growth, gene, and protein expression have been described in different models on Earth and in space. Extracellular vesicles, and in particular exosomes, are important cell-cell communicators, being secreted from almost all the cells and therefore, are a perfect target to further investigate the underlying reasons of the organism's adaptations to microgravity. Here, we studied supernatants harvested from the CellBox-1 experiment, which featured human thyroid cancer cells flown to the International Space Station during the SpaceX CRS-3 cargo mission. The initial results show differences in the number of secreted exosomes, as well as in the distribution of subpopulations in regards to their surface protein expression. Notably, alteration of their population regarding the tetraspanin surface expression was observed. This is a promising step into a new area of microgravity research and will potentially lead to the discovery of new biomarkers and pathways of cellular cross-talk.


Exosomes/metabolism , Space Flight , Thyroid Neoplasms/metabolism , Weightlessness , Antigens, CD/metabolism , Cell Line, Tumor , Fluorescence , Humans , Interferometry , Particle Size
10.
Blood Cancer Discov ; 1(1): 48-67, 2020 07.
Article En | MEDLINE | ID: mdl-32974613

Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Humans , Killer Cells, Natural , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , MicroRNAs/genetics , Neoplastic Stem Cells , Protein Kinase Inhibitors/metabolism , Protein Phosphatase 2/genetics , Tumor Microenvironment/genetics
12.
Cancer Res ; 79(6): 1151-1164, 2019 03 15.
Article En | MEDLINE | ID: mdl-30541743

In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFß1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFß1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFß-dependent immune escape mechanisms in neuroblastoma.


Exosomes/metabolism , Killer Cells, Natural/immunology , MicroRNAs/genetics , Neuroblastoma/prevention & control , Tumor Microenvironment/immunology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Exosomes/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neuroblastoma/immunology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Nat Commun ; 8(1): 1801, 2017 11 27.
Article En | MEDLINE | ID: mdl-29180617

The transcribed ultraconserved regions (T-UCRs) encode long non-coding RNAs implicated in human carcinogenesis. Their mechanisms of action and the factors regulating their expression in cancers are poorly understood. Here we show that high expression of uc.339 correlates with lower survival in 210 non-small cell lung cancer (NSCLC) patients. We provide evidence from cell lines and primary samples that TP53 directly regulates uc.339. We find that transcribed uc.339 is upregulated in archival NSCLC samples, functioning as a decoy RNA for miR-339-3p, -663b-3p, and -95-5p. As a result, Cyclin E2, a direct target of all these microRNAs is upregulated, promoting cancer growth and migration. Finally, we find that modulation of uc.339 affects microRNA expression. However, overexpression or downregulation of these microRNAs causes no significant variations in uc.339 levels, suggesting a type of interaction for uc.339 that we call "entrapping". Our results support a key role for uc.339 in lung cancer.


Carcinoma, Non-Small-Cell Lung/genetics , Conserved Sequence/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Animals , Base Sequence/genetics , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cyclins/genetics , Cyclins/metabolism , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Nude , MicroRNAs/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
15.
ChemMedChem ; 11(12): 1296-308, 2016 06 20.
Article En | MEDLINE | ID: mdl-26507467

Alzheimer's disease (AD) is a major public health challenge that faces an aging global population. Current drug treatment has demonstrated only symptomatic efficacy, leaving an unmet medical need for a new generation of disease-modifying therapies. Following the multitarget-directed ligand approach, a small library of coumarin-based derivatives was designed and synthesized as a follow-up to our studies on AP2238, aimed at expanding its biological profile. The coumarin substitution pattern at the 6- or 7-position was modified by introducing alkyl chains of variable lengths and with different terminal amino functional groups. 3-(4-{[Benzyl(ethyl)amino]methyl}phenyl)-6-({5-[(7-methoxy-6H-indeno[2,1-b]quinolin-11-yl)amino]pentyl}oxy)-2H-chromen-2-one, bearing the bulkiest amine, emerged as a non-neurotoxic dual acetylcholinesterase (AChE)/butyrylcholinesterase (BuChE) inhibitor, potentially suitable for the treatment of the middle stage of AD. Furthermore, the introduction of a diethylamino spacer, as in 3-(4-{[benzyl(ethyl)amino]methyl}phenyl)-6-{[5-(diethylamino)pentyl]oxy}-2H-chromen-2-one and 3-(4-{[benzyl(ethyl)amino]methyl}phenyl)-7-[4-(diethylamino)butoxy]-2H-chromen-2-one, led to nanomolar human AChE inhibitors endowed with significant inhibitory activity toward Aß42 self-aggregation, whereas the reference compound was completely ineffective. Furthermore, 3-(4-{[benzyl(ethyl)amino]methyl}phenyl)-7-[4-(diethylamino)butoxy]-2H-chromen-2-one also showed promising neuroprotective behavior, which makes it a potential candidate for development into a disease-modifying agent.


Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Coumarins/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Benzylamines/chemistry , Benzylamines/therapeutic use , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/genetics , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Coumarins/chemical synthesis , Coumarins/therapeutic use , Humans , Ligands , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship
16.
Front Med (Lausanne) ; 2: 47, 2015.
Article En | MEDLINE | ID: mdl-26258125

Dissecting the crosstalk between tumor cells and tumor microenvironment is quickly becoming the new frontier in cancer research. It is now widely accepted that cancer cells can exert a profound influence over their surroundings, by changing the microenvironment from a normal to a tumor-supportive state that allows for sustained tumor growth, invasion, and drug resistance. Extracellular vesicles, especially exosomes, are recognized as a new category of intercellular communicator, and they are emerging as of primary importance in controlling the interplay between the tumor and its environment. Exosomes derived from cancer cells or from cells of the tumor microenvironment allow for the horizontal transfer of information by virtue of their cargo, made of functional proteins and nucleic acids that are specifically sorted and loaded in exosomes during their biogenesis. In this review, we will discuss the current knowledge regarding the role invested by microRNAs, a family of short non-coding RNAs frequently deregulated in malignancies and present in exosomes, in shaping the microenvironment in a cancer-dependent manner.

17.
J Natl Cancer Inst ; 107(7)2015 Jul.
Article En | MEDLINE | ID: mdl-25972604

BACKGROUND: How exosomic microRNAs (miRNAs) contribute to the development of drug resistance in the context of the tumor microenvironment has not been previously described in neuroblastoma (NBL). METHODS: Coculture experiments were performed to assess exosomic transfer of miR-21 from NBL cells to human monocytes and miR-155 from human monocytes to NBL cells. Luciferase reporter assays were performed to assess miR-155 targeting of TERF1 in NBL cells. Tumor growth was measured in NBL xenografts treated with Cisplatin and peritumoral exosomic miR-155 (n = 6 mice per group) CD163, miR-155, and TERF1 levels were assessed in 20 NBL primary tissues by Human Exon Arrays and quantitative real-time polymerase chain reaction. Student's t test was used to evaluate the differences between treatment groups. All statistical tests were two-sided. RESULTS: miR-21 mean fold change (f.c.) was 12.08±0.30 (P < .001) in human monocytes treated with NBL derived exosomes for 48 hours, and miR-155 mean f.c. was 4.51±0.25 (P < .001) in NBL cells cocultured with human monocytes for 48 hours. TERF1 mean luciferase activity in miR-155 transfected NBL cells normalized to scrambled was 0.36 ± 0.05 (P <.001). Mean tumor volumes in Dotap-miR-155 compared with Dotap-scrambled were 322.80±120mm(3) and 76.00±39.3mm(3), P = .002 at day 24, respectively. Patients with high CD163 infiltrating NBLs had statistically significantly higher intratumoral levels of miR-155 (P = .04) and lower levels of TERF1 mRNA (P = .02). CONCLUSIONS: These data indicate a unique role of exosomic miR-21 and miR-155 in the cross-talk between NBL cells and human monocytes in the resistance to chemotherapy, through a novel exosomic miR-21/TLR8-NF-кB/exosomic miR-155/TERF1 signaling pathway.


Drug Resistance, Neoplasm , Exosomes/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , Neuroblastoma/drug therapy , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Cell Communication , Cisplatin/pharmacology , Coculture Techniques , Gene Expression Regulation, Neoplastic , Heterografts , Humans , NF-kappa B/metabolism , Neuroblastoma/metabolism , Real-Time Polymerase Chain Reaction , Receptor Cross-Talk , Shelterin Complex , Telomere-Binding Proteins/metabolism , Toll-Like Receptor 8/metabolism , Tumor Microenvironment
18.
Drug Deliv ; 22(5): 590-7, 2015.
Article En | MEDLINE | ID: mdl-24286206

The aim of this study was to incorporate a new naphthalenediimide derivative (AN169) with a promising anticancer activity into pegylated liposomes to an extent that allows its in vitro and in vivo testing without use of toxic solvent. AN169-loaded liposomes were prepared using the thin-film hydration method and characterized for size, polydispersity index, drug content and drug release. We examined their lyophilization ability in the presence of cryoprotectants (trehalose, sucrose and lysine) and the long-term stability of the lyophilized products stored at 4 °C for 3 and 6 months by particle size changes and drug leakage. AN169 was successfully loaded into liposomes with an entrapment efficiency of 87.3 ± 2.5%. The hydrodynamic diameter of these liposomes after sonication was ∼ 145 nm with a high degree of monodispersity. Trehalose was found to be superior to the other lyoprotectants. In particular, trehalose 1:10 lipid:cryoprotectant molar ratio may provide stable lyophilized liposomes with the conservation of physicochemical properties upon freeze-drying and long-term storage conditions. We also assessed their in vitro antitumor activity in human cancer cell lines (HTLA-230 neuroblastoma, Mel 3.0 melanoma, OVCAR-3 ovarian carcinoma and SV620 prostate cancer cells). However, only after 72 h incubation, loaded liposomes showed almost the same IC50 as free AN169. In conclusion, we developed a stable lyophilized liposomal formulation for intravenous administration of AN169 as anticancer drug, with the advantage of avoiding the use of potentially toxic solubilizing agents for future in vivo experiments.


Antineoplastic Agents/pharmacology , Benzylamines/pharmacology , Cell Proliferation/drug effects , Imides , Liposomes/pharmacology , Naphthalenes , Naphthalimides/pharmacology , Antineoplastic Agents/chemistry , Benzylamines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Drug Screening Assays, Antitumor , Freeze Drying , Humans , In Vitro Techniques , Liposomes/chemistry , Naphthalimides/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
19.
Mini Rev Med Chem ; 14(12): 963-77, 2014.
Article En | MEDLINE | ID: mdl-25373847

Sulforaphane is a natural product that is constantly under biological investigation for its unique biological properties. This naturally occurring isothiocyanate (ITC) and its analogs are the main components of cruciferous vegetables, such as cauliflower, watercress, broccoli, cabbage, Brussels sprouts, widely used as chemopreventive agents. Due to their interesting biological profiles, natural ITCs have been exploited as starting point to develop new synthetic analogs. The present mini-review briefly highlights the most important biological actions of selected new synthetic ITCs focusing on their structure-activity relationships and related synthetic strategies.


Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/pharmacology , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Animals , Anticarcinogenic Agents/chemical synthesis , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Humans , Isothiocyanates/chemical synthesis , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/prevention & control , Structure-Activity Relationship , Sulfoxides , Vegetables/chemistry
20.
J Clin Invest ; 124(4): 1512-24, 2014 Apr.
Article En | MEDLINE | ID: mdl-24590286

Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent ß-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.


Leukemia, Myeloid, Acute/etiology , Osteonectin/physiology , Adolescent , Adult , Animals , Cell Line, Tumor , Cell Proliferation , Female , Gene Knockdown Techniques , Heterografts , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , NF-kappa B/metabolism , Nucleophosmin , Osteonectin/antagonists & inhibitors , Osteonectin/genetics , Prognosis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sp1 Transcription Factor/metabolism , Young Adult , beta Catenin/metabolism
...