Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536921

RESUMEN

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glutamina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Mutación
2.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425844

RESUMEN

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.

3.
ACS Med Chem Lett ; 6(8): 925-9, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26288695

RESUMEN

Time-dependent inhibition (TDI) of cytochrome P450 (CYP) enzymes may incur serious undesirable drug-drug interactions and in rare cases drug-induced idiosyncratic toxicity. The reactive metabolites are often generated through multiple sequential biotransformations and form adducts with CYP enzymes to inactivate their function. The complexity of these processes makes addressing TDI liability very challenging. Strategies to mitigate TDI are therefore highly valuable in discovering safe therapies to benefit patients. In this Letter, we disclose our simplified approach toward addressing CYP3A TDI liabilities, guided by metabolic mechanism hypotheses. By adding a methyl group onto the α carbon of a basic amine, TDI activities of both the truncated and full molecules (7a and 11) were completely eliminated. We propose that truncated molecules, albeit with caveats, may be used as surrogates for full molecules to investigate TDI.

4.
Transl Res ; 163(4): 418-31, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24345765

RESUMEN

The diabetes pandemic incurs extraordinary public health and financial costs that are projected to expand for the foreseeable future. Consequently, the development of definitive therapies for diabetes is a priority. Currently, a wide spectrum of therapeutic strategies-from implantable insulin delivery devices to transplantation-based cell replacement therapy, to ß-cell regeneration-focus on replacing the lost insulin-producing capacity of individuals with diabetes. Among these, ß-cell regeneration remains promising but heretofore unproved. Indeed, recent experimental work has uncovered surprising biology that underscores the potential therapeutic benefit of ß-cell regeneration. These studies have elucidated a variety of sources for the endogenous production of new ß cells from existing cells. First, ß cells, long thought to be postmitotic, have demonstrated the potential for regenerative capacity. Second, the presence of pancreatic facultative endocrine progenitor cells has been established. Third, the malleability of cellular identity has availed the possibility of generating ß cells from other differentiated cell types. Here, we review the exciting developments surrounding endogenous sources of ß-cell production and consider the potential of realizing a regenerative therapy for diabetes from adult tissues.


Asunto(s)
Trasplante de Células/métodos , Células Secretoras de Insulina/fisiología , Adulto , Animales , Trasplante de Células/tendencias , Diabetes Mellitus/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA