Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Allergy Clin Immunol ; 149(5): 1607-1616, 2022 05.
Article En | MEDLINE | ID: mdl-34774618

BACKGROUND: Asthma epidemics associated with thunderstorms have had catastrophic effects on individuals and emergency services. Seasonal allergic rhinitis (SAR) is present in the vast majority of people who develop thunderstorm asthma (TA), but there is little evidence regarding risk factors for TA among the SAR population. OBJECTIVE: We sought to identify risk factors for a history of TA and hospital presentation in a cohort of individuals with SAR. METHODS: This multicenter study recruited adults from Melbourne, Australia, with a past diagnosis of TA and/or self-reported SAR. Clinical information, spirometry results, white blood cell count, ryegrass pollen-specific (RGP-sp) IgE concentration, and fractional exhaled nitric oxide were measured to identify risk factors for a history of TA in individuals with SAR. RESULTS: From a total of 228 individuals with SAR, 35% (80 of 228) reported SAR only (the I-SAR group), 37% (84 of 228) reported TA symptoms but had not attended hospital for treatment (the O-TA group), and 28% (64 of 228) had presented to the hospital for TA (the H-TA group). All patients in the H-TA group reported a previous asthma diagnosis. Logistic regression analysis of factors associated with O-TA and H-TA indicated that lower FEV1 value and an Asthma Control Questionnaire score higher than 1.5 were associated with H-TA. Higher blood RGP-sp IgE concentration, eosinophil counts, and fractional exhaled nitric oxide level were significantly associated with both O-TA and H-TA. Receiver operating curve analysis showed an RGP-sp IgE concentration higher than 10.1 kU/L and a prebronchodilator FEV1 value of 90% or lower to be biomarkers of increased H-TA risk. CONCLUSION: Clinical tests can identify risk of a history of TA in individuals with SAR and thereby inform patient-specific treatment recommendations.


Asthma , Rhinitis, Allergic, Seasonal , Adult , Allergens , Asthma/diagnosis , Humans , Immunoglobulin E , Pollen , Rhinitis, Allergic, Seasonal/complications
2.
PLoS One ; 16(4): e0249488, 2021.
Article En | MEDLINE | ID: mdl-33852572

The world's most severe thunderstorm asthma event occurred in Melbourne, Australia on 21 November 2016, coinciding with the peak of the grass pollen season. The aetiological role of thunderstorms in these events is thought to cause pollen to rupture in high humidity conditions, releasing large numbers of sub-pollen particles (SPPs) with sizes very easily inhaled deep into the lungs. The humidity hypothesis was implemented into a three-dimensional atmospheric model and driven by inputs from three meteorological models. However, the mechanism could not explain how the Melbourne event occurred as relative humidity was very low throughout the atmosphere, and most available grass pollen remained within 40 m of the surface. Our tests showed humidity induced rupturing occurred frequently at other times and would likely lead to recurrent false alarms if used in a predictive capacity. We used the model to investigate a range of other possible pollen rupturing mechanisms which could have produced high concentrations of SPPs in the atmosphere during the storm. The mechanisms studied involve mechanical friction from wind gusts, electrical build up and discharge incurred during conditions of low relative humidity, and lightning strikes. Our results suggest that these mechanisms likely operated in tandem with one another, but the lightning method was the only mechanism to generate a pattern in SPPs following the path of the storm. If humidity induced rupturing cannot explain the 2016 Melbourne event, then new targeted laboratory studies of alternative pollen rupture mechanisms would be of considerable value to help constrain the parameterisation of the pollen rupturing process.


Asthma/epidemiology , Atmosphere , Poaceae/physiology , Rhinitis, Allergic, Seasonal/epidemiology , Australia , Climatic Processes , Humans , Models, Statistical , Pollen/physiology
3.
Allergy ; 76(4): 1136-1146, 2021 04.
Article En | MEDLINE | ID: mdl-32815173

BACKGROUND: The association between grass pollen exposure and early markers of asthma exacerbations such as lung function changes and increase in airway inflammation is limited. We investigated the associations between short-term grass pollen exposure and lung function and airway inflammation in a community-based sample, and whether any such associations were modified by current asthma, current hay fever, pollen sensitization, age, and other environmental factors. METHODS: Cross-sectional and short-term analyses of data from the Melbourne Atopy Cohort Study (MACS) participants (n = 936). Lung function was assessed using spirometry. Airway inflammation was assessed by fractional exhaled nitric oxide (FeNO) and exhaled breath condensate pH and nitrogen oxides (NOx). Daily pollen counts were collected using a volumetric spore trap. The associations were examined by linear regression. RESULTS: Higher ambient levels of grass pollen 2 days before (lag 2) were associated with lower mid-forced expiratory flow (FEF25%-75% ) and FEV1 /FVC ratio (Coef. [95% CI] = -119 [-226, -11] mL/s and -1.0 [-3.0, -0.03] %, respectively) and also 3 days before (lag 3). Increased levels of grass pollen a day before (lag 1) were associated with increased FeNO (4.35 [-0.1, 8.7] ppb) and also at lag 2. Adverse associations between pollen and multiple outcomes were greater in adults with current asthma, hay fever, and pollen sensitization. CONCLUSION: Grass pollen exposure was associated with eosinophilic airway inflammation 1-2 days after exposure and airway obstruction 2-3 days after exposure. Adults and individuals with asthma, hay fever, and pollen sensitization may be at higher risk.


Nitric Oxide , Pollen , Adult , Breath Tests , Cohort Studies , Cross-Sectional Studies , Humans , Inflammation , Lung , Poaceae
4.
Sci Total Environ ; 720: 137351, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-32325552

Seasonal allergic rhinitis (AR), also known as hay fever, is a common respiratory condition brought on by a range of environmental triggers. Previous work has characterised the relationships between community-level AR symptoms collected using mobile apps in two Australian cities, Canberra and Melbourne, and various environmental covariates including pollen. Here, we build on these relationships by assessing the skill of models that provide a next-day forecast of an individual's risk of developing AR and that nowcast ambient grass pollen concentrations using crowd-sourced AR symptoms as a predictor. Categorical grass pollen forecasts (low/moderate/high) were made based on binning mean daily symptom scores by corresponding categories. Models for an individual's risk were constructed by forward variable selection, considering environmental, demographic, behaviour and health-related inputs, with non-linear responses permitted. Proportional-odds logistic regression was then applied with the variables selected, modelling the symptom scores on their original five-point scale. AR symptom-based estimates of today's average grass pollen concentration were more accurate than those provided by two benchmark forecasting methods using various metrics for assessing accuracy. Predictions of an individual's next-day AR symptoms rated on a five-point scale were correct in 36% of cases and within one point on this scale in 82% of cases. Both outcomes were significantly better than chance. This large-scale AR symptoms measurement program shows that crowd-sourced symptom scores can be used to predict the daily average grass pollen concentration, as well as provide a personalised AR forecast.


Crowdsourcing , Rhinitis, Allergic, Seasonal , Allergens , Australia , Humans , Poaceae , Pollen
5.
Sci Total Environ ; 705: 135147, 2020 Feb 25.
Article En | MEDLINE | ID: mdl-31841904

Allergic Rhinitis (AR) affects over half a billion people worldwide with an estimated prevalence of 1 in 5 individuals in developed countries. Although ambient pollen exposure is a causal factor in AR, the symptom-exposure relationship is typically not studied in the broader community but in small, well-characterised cohorts drawn from clinical populations. To identify relationships between AR symptoms in the community and a range of environmental factors, we used a database containing over 96,000 symptom score reports collected over a 3-year period (2014-2016) through freely available smartphone apps released in two Australian cities, Melbourne and Canberra. Ambient pollen levels and symptom scores were strongly related, with grass pollen explaining most of the symptom variation. Other factors correlated with higher symptom scores included temperature (R > 0.73) and wind speed (R > 0.75). In general, worse symptom scores were reported by younger participants, women, and those who had taken medication for AR in the preceding 24 h. The strength of this relationship varied between the two cities. Smartphone-based symptom surveys offer a cost-effective means of studying real-world risk factors for AR in a broader 'extra-clinical' population.


Crowdsourcing , Rhinitis, Allergic , Allergens , Australia , Female , Humans , Pollen
6.
PLoS One ; 13(4): e0194929, 2018.
Article En | MEDLINE | ID: mdl-29649224

We examine the seasonality of asthma-related hospital admissions in Melbourne, Australia, in particular the contribution and predictability of episodic thunderstorm asthma. Using a time-series ecological approach based on asthma admissions to Melbourne metropolitan hospitals, we identified seasonal peaks in asthma admissions that were centred in late February, June and mid-November. These peaks were most likely due to the return to school, winter viral infections and seasonal allergies, respectively. We performed non-linear statistical regression to predict daily admission rates as functions of the seasonal cycle, weather conditions, reported thunderstorms, pollen counts and air quality. Important predictor variables were the seasonal cycle and mean relative humidity in the preceding two weeks, with higher humidity associated with higher asthma admissions. Although various attempts were made to model asthma admissions, none of the models explained substantially more variation above that associated with the annual cycle. We also identified a list of high asthma admissions days (HAADs). Most HAADs fell in the late-February return-to-school peak and the November allergy peak, with the latter containing the greatest number of daily admissions. Many HAADs in the spring allergy peak may represent episodes of thunderstorm asthma, as they were associated with rainfall, thunderstorms, high ambient grass pollen levels and high humidity, a finding that suggests thunderstorm asthma is a recurrent phenomenon in Melbourne that occurs roughly once per five years. The rarity of thunderstorm asthma events makes prediction challenging, underscoring the importance of maintaining high standards of asthma management, both for patients and health professionals, especially during late spring and early summer.


Asthma/diagnosis , Asthma/epidemiology , Rhinitis, Allergic, Seasonal/diagnosis , Rhinitis, Allergic, Seasonal/epidemiology , Seasons , Weather , Adolescent , Adult , Aged , Aged, 80 and over , Air Pollution , Allergens , Australia , Child , Child, Preschool , Female , Hospitalization , Humans , Infant , Infant, Newborn , Linear Models , Male , Middle Aged , Pollen/immunology , Regression Analysis , Young Adult
7.
Sci Total Environ ; 534: 85-96, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-25891684

Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.


Environmental Exposure/statistics & numerical data , Pollen , Rhinitis, Allergic, Seasonal/epidemiology , Australasia , Climate Change , Environmental Exposure/analysis , Humans
8.
Plant Cell Physiol ; 50(3): 554-71, 2009 Mar.
Article En | MEDLINE | ID: mdl-19181700

The elongation (elo) mutants of barley (Hordeum vulgare cv 'Himalaya') are a class of dwarf plants with defects affecting cell expansion. The phenotypes of mutants in three of the elo loci (elo1, elo2 and elo3) are recessive to the wild-type allele, and the mutations at elo-4 and elo-5 are semi-dominant. Allelism tests showed that elo1, elo2 and elo3 were at separate loci, and mapping data indicated that elo-5 was possibly allelic to either elo1 or elo2. A phenotype common to all elo mutants was the presence of short, radially swollen cells on the leaf epidermis, indicating a defect in longitudinal cell expansion. In three of the mutants, elo1, elo3 and elo5, this was accompanied by a twisting growth habit. Two of the mutations, elo2 and elo-5, affected cell division, with aberrant periclinal cell division resulting in the formation of increased cell layers in the leaf epidermis of elo2 and elo-5 homozygotes and in the aleurone layer of elo2 grains. Misplaced anticlinal divisions also occurred in the elo-5 leaf epidermis. Leaf cell walls of all elo lines contained less cellulose than the wild- type, and the cortical microtubules in elongating root epidermal cells in some elo lines were more randomly oriented than in the wild-type, consistent with the presence of radially swollen cells. We discuss possible functions for the Elo genes in primary cell wall synthesis.


Cell Enlargement , Cell Wall/chemistry , Hordeum/genetics , Plant Leaves/cytology , Alleles , Cell Division , Cellulose/analysis , Hordeum/cytology , Microtubules/ultrastructure , Mutation , Phenotype , Plant Epidermis/cytology , Plant Epidermis/genetics , Plant Leaves/genetics , Plant Roots/cytology , Plant Roots/genetics
9.
J Proteome Res ; 7(3): 1159-87, 2008 Mar.
Article En | MEDLINE | ID: mdl-18260611

To identify integral and peripheral plasma membrane (PM) proteins from Oryza sativa (rice), highly enriched PM fractions from rice suspension cultured cells were analyzed using two complementary approaches. The PM was enriched using aqueous two-phase partitioning and high pH carbonate washing to remove soluble, contaminating proteins and characterized using enzymatic and immunological analyses. Proteins from the carbonate-washed PM (WPM) were analyzed by either one-dimensional gel electrophoresis (1D-SDS-PAGE) followed by tryptic proteolysis or proteolysis followed by strong cation exchange liquid chromatography (LC) with subsequent analysis of the tryptic peptides by LC-MS/MS (termed Gel-LC-MS/MS and 2D-LC-MS/MS, respectively). Combining the results of these two approaches, 438 proteins were identified on the basis of two or more matching peptides, and a further 367 proteins were identified on the basis of single peptide matches after data analysis with two independent search algorithms. Of these 805 proteins, 350 were predicted to be PM or PM-associated proteins. Four hundred and twenty-five proteins (53%) were predicted to be integrally associated with a membrane, via either one or many (up to 16) transmembrane domains, a GPI-anchor, or membrane-spanning beta-barrels. Approximately 80% of the 805 identified proteins were assigned a predicted function, based on similarity to proteins of known function or the presence of functional domains. Proteins involved in PM-related activities such as signaling (21% of the 805 proteins), transporters and ATPases (14%), and cellular trafficking (8%), such as via vesicles involved in endo- and exocytosis, were identified. Proteins that are involved in cell wall biosynthesis were also identified (5%) and included three cellulose synthase (CESA) proteins, a cellulose synthase-like D (CSLD) protein, cellulases, and several callose synthases. Approximately 20% of the proteins identified in this study remained functionally unclassified despite being predicted to be membrane proteins.


Oryza/chemistry , Peptides/isolation & purification , Plant Proteins/chemistry , Proteome , Tandem Mass Spectrometry/methods , Algorithms , Cell Membrane/chemistry , Chromatography, Liquid , Plant Proteins/isolation & purification
10.
Science ; 311(5769): 1940-2, 2006 Mar 31.
Article En | MEDLINE | ID: mdl-16574868

A characteristic feature of grasses and commercially important cereals is the presence of (1,3;1,4)-beta-d-glucans in their cell walls. We have used comparative genomics to link a major quantitative trait locus for (1,3;1,4)-beta-d-glucan content in barley grain to a cluster of cellulose synthase-like CslF genes in rice. After insertion of rice CslF genes into Arabidopsis, we detected (1,3;1,4)-beta-d-glucan in walls of transgenic plants using specific monoclonal antibodies and enzymatic analysis. Because wild-type Arabidopsis does not contain CslF genes or have (1,3;1,4)-beta-d-glucans in its walls, these experiments provide direct, gain-of-function evidence for the participation of rice CslF genes in (1,3;1,4)-beta-d-glucan biosynthesis.


Genes, Plant , Glucosyltransferases/genetics , Oryza/genetics , beta-Glucans/metabolism , Antibodies, Monoclonal , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/chemistry , Genome, Plant , Genomics , Glucosyltransferases/metabolism , Hordeum/chemistry , Hordeum/genetics , Oryza/enzymology , Plant Leaves/chemistry , Plants, Genetically Modified , Quantitative Trait Loci , Synteny , Transformation, Genetic , beta-Glucans/analysis , beta-Glucans/chemistry
11.
Planta ; 224(3): 655-67, 2006 Aug.
Article En | MEDLINE | ID: mdl-16532317

Barley endosperm begins development as a syncytium where numerous nuclei line the perimeter of a large vacuolated central cell. Between 3 and 6 days after pollination (DAP) the multinucleate syncytium is cellularized by the centripetal synthesis of cell walls at the interfaces of nuclear cytoplasmic domains between individual nuclei. Here we report the temporal and spatial appearance of key polysaccharides in the cell walls of early developing endosperm of barley, prior to aleurone differentiation. Flowering spikes of barley plants grown under controlled glasshouse conditions were hand-pollinated and the developing grains collected from 3 to 8 DAP. Barley endosperm development was followed at the light and electron microscope levels with monoclonal antibodies specific for (1-->3)-beta-D: -glucan (callose), (1-->3,1-->4)-beta-D: -glucan, hetero-(1-->4)-beta-D: -mannans, arabino-(1-->4)-beta-D: -xylans, arabinogalactan-proteins (AGPs) and with the enzyme, cellobiohydrolase II, to detect (1-->4)-beta-D: -glucan (cellulose). Callose and cellulose were present in the first formed cell walls between 3 and 4 DAP. However, the presence of callose in the endosperm walls was transient and at 6 DAP was only detected in collars surrounding plasmodesmata. (1-->3,1-->4)-beta-D: -Glucan was not deposited in the developing cell walls until approximately 5 DAP and hetero-(1-->4)-beta-D: -mannans followed at 6 DAP. Deposition of AGPs and arabinoxylan in the wall began at 7 and 8 DAP, respectively. For arabinoxylans, there is a possibility that they are deposited earlier in a highly substituted form that is inaccessible to the antibody. Arabinoxylan and heteromannan were also detected in Golgi and associated vesicles in the cytoplasm. In contrast, (1-->3,1-->4)-beta-D: -glucan was not detected in the cytoplasm in endosperm cells; similar results were obtained for coleoptile and suspension cultured cells.


Hordeum/metabolism , Polysaccharides/metabolism , Seeds/metabolism , Cell Wall/metabolism , Cell Wall/ultrastructure , Cellulose/metabolism , Galactans/metabolism , Glucans/metabolism , Hordeum/cytology , Hordeum/embryology , Immunohistochemistry , Mannans/metabolism , Microscopy, Electron, Transmission , Seeds/cytology , Seeds/growth & development , Xylans/metabolism , beta-Glucans/metabolism
...