Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 67(2): 399-414, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22183615

RESUMEN

Adiponectin (Ad), an adipokine exclusively secreted by the adipose tissue, has emerged as a paracrine metabolic regulator as well as a protectant against oxidative stress. Pharmacological approaches of protecting against clinical hyperoxic lung injury during oxygen therapy/treatment are limited. We have previously reported that Ad inhibits the NADPH oxidase-catalyzed formation of superoxide from molecular oxygen in human neutrophils. Based on this premise, we conducted studies to determine whether (i) exogenous Ad would protect against the hyperoxia-induced barrier dysfunction in the lung endothelial cells (ECs) in vitro, and (ii) endogenously synthesized Ad would protect against hyperoxic lung injury in wild-type (WT) and Ad-overexpressing transgenic (AdTg) mice in vivo. The results demonstrated that exogenous Ad protected against the hyperoxia-induced oxidative stress, loss of glutathione (GSH), cytoskeletal reorganization, barrier dysfunction, and leak in the lung ECs in vitro. Furthermore, the hyperoxia-induced lung injury, vascular leak, and lipid peroxidation were significantly attenuated in AdTg mice in vivo. Also, AdTg mice exhibited elevated levels of total thiols and GSH in the lungs as compared with WT mice. For the first time, our studies demonstrated that Ad protected against the hyperoxia-induced lung damage apparently through attenuation of oxidative stress and modulation of thiol-redox status.


Asunto(s)
Adiponectina/metabolismo , Adiponectina/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Adiponectina/genética , Animales , Bovinos , Hipoxia de la Célula/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
2.
PLoS One ; 6(5): e19654, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21573017

RESUMEN

BACKGROUND: Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFß1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. METHODOLOGY/PRINCIPAL FINDINGS: We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E. coli injection (i.p. E. coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1-/- animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFß1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1-/- mice after CLP. The survival advantage for TSP-1-/- animals persisted when i.p. E. coli injections were performed. TSP-1-/- BMMs had increased phagocytic capacity compared to WT. CONCLUSIONS: TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFß1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition.


Asunto(s)
Inmunidad Innata/inmunología , Sepsis/inmunología , Sepsis/patología , Trombospondina 1/metabolismo , Animales , Carga Bacteriana/inmunología , Ciego/microbiología , Ciego/patología , Recuento de Células , Citocinas/sangre , Citoprotección , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Ligadura , Macrófagos/citología , Ratones , Lavado Peritoneal , Peritoneo/microbiología , Peritoneo/patología , Fagocitosis , Punciones , Sepsis/sangre , Sepsis/microbiología , Análisis de Supervivencia , Trombospondina 1/deficiencia , Cicatrización de Heridas
3.
Am J Respir Cell Mol Biol ; 45(5): 999-1006, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21562315

RESUMEN

Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α-smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-ß, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation.


Asunto(s)
Proteína Proto-Oncogénica c-ets-2/metabolismo , Fibrosis Pulmonar/metabolismo , Actinas/biosíntesis , Actinas/genética , Animales , Bleomicina/efectos adversos , Células Cultivadas , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Colágeno Tipo III/biosíntesis , Colágeno Tipo III/genética , Factor de Crecimiento del Tejido Conjuntivo/biosíntesis , Factor de Crecimiento del Tejido Conjuntivo/genética , Fibroblastos/metabolismo , Expresión Génica , Humanos , Pulmón/química , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Neumonía/inducido químicamente , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología
4.
Biomaterials ; 32(2): 538-46, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20875916

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring. Collagen deposition, myofibroblast expansion, and the development of fibroblastic foci are the hallmark pathological events. The origin and mechanism of recruitment of myofibroblasts, the key cell contributing to these events, is unknown. We hypothesize that the fibrotic lung microenvironment causes differentiation of arriving bone marrow-derived cells into myofibroblasts. Therefore, a method of isolating the effects of fibrotic microenvironment components on various cell types was developed. Electrospun nanofibers were coated with lung extracts from fibrotic or non-fibrotic mice and used to determine effects on bone marrow cells from naïve mice. Varying moduli nanofibers were also employed to determine matrix stiffness effects on these cells. At structured time points, bone marrow cell morphology was recorded and changes in fibrotic gene expression determined by real-time PCR. Cells plated on extracts isolated from fibrotic murine lungs secreted larger amounts of extracellular matrix, adopted a fibroblastic morphology, and exhibited increased myofibroblast gene expression after 8 and 14 days; cells plated on extracts from non-fibrotic lungs did not. Similar results were observed when the nanofiber modulus was increased. This ex vivo system appears to recapitulate the three-dimensional fibrotic lung microenvironment.


Asunto(s)
Nanofibras , Animales , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Masculino , Ratones , Poliésteres/química , Fibrosis Pulmonar/metabolismo
5.
Am J Respir Cell Mol Biol ; 44(4): 556-61, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20581099

RESUMEN

Thrombospondin-1 (TSP-1) is an extracellular protein critical to normal lung homeostasis, and is reported to activate latent transforming growth factor-ß (TGF-ß). Because active TGF-ß is causally involved in lung fibrosis after bleomycin challenge, alterations in TSP-1 may be relevant to pulmonary fibrosis. We sought to determine the effects of TSP-1 deficiency on the susceptibility to bleomycin-induced pulmonary fibrosis in a murine model. Age-matched and sex-matched C57BL/6 wild-type (WT) and TSP-1-deficient mice were treated twice weekly for 4 weeks with intraperitoneal bleomycin (0.035 U/g) or PBS, and were allowed to rest 1 week before being killed. Their lungs were inflated with PBS, fixed in formalin, paraffin-embedded, and sectioned. A certified veterinary pathologist blindly scored each slide for inflammation and fibrosis. Lungs were homogenized to obtain RNA and protein for the real-time RT-PCR analysis of connective tissue growth factor (CTGF) and collagen I, and for Western blotting to detect phospho-Smad2, or total Smad2/3, respectively. In response to bleomycin treatment, measures of fibrosis and inflammation, along with CTGF and collagen I mRNA concentrations, were increased in TSP-1-deficient mice compared with WT mice. Notably, Smad 2/3 signaling was of equal strength in WT and TSP-1 knockout mice treated with bleomycin, suggesting that TSP-1 is not required for the activation of TGF-ß. These results demonstrate that TSP-1 deficiency does not protect mice from systemic bleomycin challenge, and that TSP-1 deficiency is associated with increased expression of lung collagen and CTGF.


Asunto(s)
Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/prevención & control , Trombospondina 1/deficiencia , Animales , Bleomicina , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Neumonía/complicaciones , Neumonía/metabolismo , Neumonía/patología , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Smad2/metabolismo , Trombospondina 1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Am J Respir Crit Care Med ; 176(1): 78-89, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17431224

RESUMEN

RATIONALE: An increase in the number of mononuclear phagocytes in lung biopsies from patients with idiopathic pulmonary fibrosis (IPF) worsens prognosis. Chemokines that recruit mononuclear phagocytes, such as CC chemokine ligand 2 (CCL2), are elevated in bronchoalveolar lavage (BAL) fluid (BALF) from patients with IPF. However, little attention is given to the role of the mononuclear phagocyte survival and recruitment factor, macrophage colony-stimulating factor (M-CSF), in pulmonary fibrosis. OBJECTIVES: To investigate the role of mononuclear phagocytes and M-CSF in pulmonary fibrosis. METHODS: Wild-type, M-CSF-/-, or CCL2-/- mice received intraperitoneal bleomycin. Lung inflammation and fibrosis were measured by immunohistochemistry, ELISA, collagen assay, BAL differentials, real-time polymerase chain reaction, and Western blot analysis. Human and mouse macrophages were stimulated with M-CSF for CCL2 expression. BALF from patients with IPF was examined for M-CSF and CCL2. MEASUREMENTS AND MAIN RESULTS: M-CSF-/- and CCL2-/- mice had less lung fibrosis, mononuclear phagocyte recruitment, collagen deposition, and connective tissue growth factor (CTGF) expression after bleomycin administration than wild-type littermates. Human and mouse macrophages stimulated with M-CSF had increased CCL2 production, and intratracheal administration of M-CSF in mice induced CCL2 production in BALF. Finally, BALF from patients with IPF contained significantly more M-CSF and CCL2 than BALF from normal volunteers. Elevated levels of M-CSF were associated with elevated CCL2 in BALF and the diagnosis of IPF. CONCLUSIONS: These data suggest that M-CSF contributes to the pathogenesis of pulmonary fibrosis in mice and in patients with IPF through the involvement of mononuclear phagocytes and CCL2 production.


Asunto(s)
Quimiocina CCL2/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos Alveolares/inmunología , Fibrosis Pulmonar/inmunología , Adulto , Animales , Bleomicina , Líquido del Lavado Bronquioalveolar/citología , Estudios de Casos y Controles , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Fagocitos/metabolismo , Fibrosis Pulmonar/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA