Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Nat Cell Biol ; 26(2): 194-206, 2024 Feb.
Article En | MEDLINE | ID: mdl-38332353

Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.


DNA, Mitochondrial , DNA-Binding Proteins , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Replication , Endosomes/metabolism , Nucleotidyltransferases/genetics , Inflammation/genetics , Mitochondrial Proteins/metabolism
2.
Neurosci Biobehav Rev ; 154: 105424, 2023 Nov.
Article En | MEDLINE | ID: mdl-37827475

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques (Macaca mulatta). We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.


Aging , Social Behavior , Animals , Macaca mulatta/physiology , Biology
3.
Hum Mol Genet ; 32(15): 2422-2440, 2023 07 20.
Article En | MEDLINE | ID: mdl-37129502

The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.


Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , DNA, Mitochondrial/genetics , Immunity, Innate/genetics , Interferons , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
4.
Annu Rev Biochem ; 92: 299-332, 2023 06 20.
Article En | MEDLINE | ID: mdl-37001140

According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.


DNA, Mitochondrial , Mitochondria , Animals , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Immunity, Innate/genetics , Aging/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Mammals/genetics
5.
bioRxiv ; 2023 Jan 29.
Article En | MEDLINE | ID: mdl-36747827

Social adversity can increase the age-associated risk of disease and death, yet the biological mechanisms that link social adversities to aging remain poorly understood. Long-term naturalistic studies of nonhuman animals are crucial for integrating observations of social behavior throughout an individual's life with detailed anatomical, physiological, and molecular measurements. Here, we synthesize the body of research from one such naturalistic study system, Cayo Santiago Island, which is home to the world's longest continuously monitored free-ranging population of rhesus macaques. We review recent studies of age-related variation in morphology, gene regulation, microbiome composition, and immune function. We also discuss ecological and social modifiers of age-markers in this population. In particular, we summarize how a major natural disaster, Hurricane Maria, affected rhesus macaque physiology and social structure and highlight the context-dependent and domain-specific nature of aging modifiers. Finally, we conclude by providing directions for future study, on Cayo Santiago and elsewhere, that will further our understanding of aging across different domains and how social adversity modifies aging processes.

6.
Gen Hosp Psychiatry ; 62: 43-48, 2020.
Article En | MEDLINE | ID: mdl-31775068

OBJECTIVE: Suicide is a public health threat. Nevertheless, the research literature on actively suicidal participants is relatively sparse, in part because they are often excluded from medical, psychiatric, and psychological research for a host of logistical, ethical, and safety concerns. These obstacles to research participation and enrollment may contribute to our lack of understanding regarding the neurobiology of the suicidal crisis as well as to the dearth of evidence concerning both risk prediction and treatment. METHOD: In order to directly investigate neurobiological markers of acute suicide risk, the National Institute of Mental Health Intramural Research Program (NIMH-IRP) implemented the Neurobiology of Suicide protocol. In this protocol, actively suicidal individuals consent to research for both neurobiological assessment and potential rapid-acting interventions. RESULTS AND CONCLUSIONS: This article reviews lessons learned from implementing this protocol in the hopes of assisting future research on the neurobiology of suicide. Areas of specific discussion include the Failure Modes and Effects Analysis (FMEA), recruitment and informed consent, participant monitoring, and the safety of the physical environment.


Clinical Protocols , Clinical Trials as Topic , Suicide , Humans
7.
J Neuroendocrinol ; 31(8): e12760, 2019 08.
Article En | MEDLINE | ID: mdl-31233647

Oxytocin (OT) often regulates social behaviours in sex-specific ways, and this may be a result of sex differences in the brain OT system. Adult male rats show higher OT receptor (OTR) binding in the posterior bed nucleus of the stria terminalis (pBNST) than adult female rats. In the present study, we investigated the mechanisms that lead to this sex difference. First, we found that male rats have higher OTR mRNA expression in the pBNST than females at postnatal day (P) 35 and P60, which demonstrates the presence of the sex difference in OTR binding density at message level. Second, the sex difference in OTR binding density in the pBNST was absent at P0 and P3, but was present by P5. Third, systemic administration of the oestrogen receptor (ER) antagonist fulvestrant at P0 and P1 dose-dependently reduced OTR binding density in the pBNST of 5-week-old male rats, but did not eliminate the sex difference in OTR binding density. Fourth, pBNST-OTR binding density was lower in androgen receptor (AR) deficient genetic male rats compared to wild-type males, but higher compared to wild-type females. Finally, systemic administration of the histone deacetylase inhibitor valproic acid at P0 and P1 did not alter pBNST-OTR binding density in 5-week-old male and female rats. Interestingly, neonatal ER antagonism, AR deficiency, and neonatal valproic acid treatment each eliminated the sex difference in pBNST size. Overall, we demonstrate a role for neonatal ER and AR activation in setting up the sex difference in OTR binding density in the pBNST, which may underlie sexual differentiation of the pBNST and social behaviour.


Androgens/pharmacology , Estrogens/pharmacology , Receptors, Oxytocin/genetics , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Female , Gene Expression Regulation/drug effects , Male , Oxytocin/pharmacology , Rats , Rats, Long-Evans , Rats, Wistar , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Receptors, Oxytocin/metabolism , Sex Characteristics , Social Behavior
8.
Mol Biol Cell ; 30(10): 1198-1213, 2019 05 01.
Article En | MEDLINE | ID: mdl-30865555

Mitochondria are essential and dynamic organelles undergoing constant fission and fusion. The primary players in mitochondrial morphology (MFN1/2, OPA1, DRP1) have been identified, but their mechanism(s) of regulation are still being elucidated. ARL2 is a regulatory GTPase that has previously been shown to play a role in the regulation of mitochondrial morphology. Here we demonstrate that ELMOD2, an ARL2 GTPase-activating protein (GAP), is necessary for ARL2 to promote mitochondrial elongation. We show that loss of ELMOD2 causes mitochondrial fragmentation and a lower rate of mitochondrial fusion, while ELMOD2 overexpression promotes mitochondrial tubulation and increases the rate of fusion in a mitofusin-dependent manner. We also show that a mutant of ELMOD2 lacking GAP activity is capable of promoting fusion, suggesting that ELMOD2 does not need GAP activity to influence mitochondrial morphology. Finally, we show that ELMOD2, ARL2, Mitofusins 1 and 2, Miros 1 and 2, and mitochondrial phospholipase D (mitoPLD) all localize to discrete, regularly spaced puncta along mitochondria. These results suggest that ELMOD2 is functioning as an effector downstream of ARL2 and upstream of the mitofusins to promote mitochondrial fusion. Our data provide insights into the pathway by which mitochondrial fusion is regulated in the cell.


Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mitochondrial Dynamics/physiology , Animals , COS Cells , Cell Line , Chlorocebus aethiops , GTP Phosphohydrolases/metabolism , Gene Knockout Techniques/methods , Humans , Membrane Fusion/physiology , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism
9.
Nat Metab ; 1(12): 1209-1218, 2019 12.
Article En | MEDLINE | ID: mdl-32395698

The mammalian genome comprises nuclear DNA (nDNA) derived from both parents and mitochondrial DNA (mtDNA) that is maternally inherited and encodes essential proteins required for oxidative phosphorylation. Thousands of copies of the circular mtDNA are present in most cell types that are packaged by TFAM into higher-order structures called nucleoids1. Mitochondria are also platforms for antiviral signalling2 and, due to their bacterial origin, mtDNA and other mitochondrial components trigger innate immune responses and inflammatory pathology2,3. We showed previously that instability and cytoplasmic release of mtDNA activates the cGAS-STING-TBK1 pathway resulting in interferon stimulated gene (ISG) expression that promotes antiviral immunity4. Here, we find that persistent mtDNA stress is not associated with basally activated NF-κB signalling or interferon gene expression typical of an acute antiviral response. Instead, a specific subset of ISGs, that includes Parp9, remains activated by the unphosphorylated form of ISGF3 (U-ISGF3) that enhances nDNA damage and repair responses. In cultured primary fibroblasts and cancer cells, the chemotherapeutic drug doxorubicin causes mtDNA damage and release, which leads to cGAS-STING-dependent ISG activation. In addition, mtDNA stress in TFAM-deficient mouse melanoma cells produces tumours that are more resistant to doxorubicin in vivo. Finally, Tfam +/- mice exposed to ionizing radiation exhibit enhanced nDNA repair responses in spleen. Therefore, we propose that damage to and subsequent release of mtDNA elicits a protective signalling response that enhances nDNA repair in cells and tissues, suggesting mtDNA is a genotoxic stress sentinel.


Cell Nucleus/genetics , DNA, Mitochondrial/physiology , Genome/genetics , Animals , Cell Line, Tumor , Cytosol/metabolism , DNA Damage/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Interferon-Stimulated Gene Factor 3/genetics , Interferons/biosynthesis , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Nude , NF-kappa B/physiology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology
10.
J Cell Biol ; 217(10): 3327-3329, 2018 10 01.
Article En | MEDLINE | ID: mdl-30154188

What causes inflammation in age-related neurodegenerative diseases remains a mystery. Sliter et al. (2018. Nature https://doi.org/10.1038/s41586-018-0448-9) show that, when damaged mitochondria cannot be removed by mitophagy, stress from exercise or mitochondrial DNA mutations activates the proinflammatory cGAS-STING pathway that may contribute to Parkinson's disease.


Mitophagy , Protein Kinases , Humans , Inflammation , Mitochondria , Ubiquitin-Protein Ligases
11.
Cell Metab ; 28(5): 776-786.e5, 2018 11 06.
Article En | MEDLINE | ID: mdl-30122556

Transient mitochondrial stress can promote beneficial physiological responses and longevity, termed "mitohormesis." To interrogate mitohormetic pathways in mammals, we generated mice in which mitochondrial superoxide dismutase 2 (SOD2) can be knocked down in an inducible and reversible manner (iSOD2-KD mice). Depleting SOD2 only during embryonic development did not cause post-natal lethality, allowing us to probe adaptive responses to mitochondrial oxidant stress in adult mice. Liver from adapted mice had increased mitochondrial biogenesis and antioxidant gene expression and fewer reactive oxygen species. Gene expression analysis implicated non-canonical activation of the Nrf2 antioxidant and PPARγ/PGC-1α mitochondrial signaling pathways in this response. Transient SOD2 knockdown in embryonic fibroblasts from iSOD2-KD mice also resulted in adaptive mitochondrial changes, enhanced antioxidant capacity, and resistance to a subsequent oxidant challenge. We propose that mitohormesis in response to mitochondrial oxidative stress in mice involves sustained activation of mitochondrial and antioxidant signaling pathways to establish a heightened basal antioxidant state.


Mitochondria/metabolism , Oxidative Stress , Signal Transduction , Superoxide Dismutase/metabolism , Animals , Antioxidants/metabolism , Female , Longevity , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics
12.
Cell Logist ; 7(3): e1340104, 2017.
Article En | MEDLINE | ID: mdl-28944094

Mitochondria are essential, dynamic organelles that regularly undergo both fusion and fission in response to cellular conditions, though mechanisms of the regulation of their dynamics are incompletely understood. We provide evidence that increased activity of the small GTPase ARL2 is strongly correlated with an increase in fusion, while loss of ARL2 activity results in a decreased rate of mitochondrial fusion. Strikingly, expression of activated ARL2 can partially restore the loss of fusion resulting from deletion of either mitofusin 1 (MFN1) or mitofusin 2 (MFN2), but not deletion of both. We only observe the full effects of ARL2 on mitochondrial fusion when it is present in the intermembrane space (IMS), as constructs driven to the matrix or prevented from entering mitochondria are essentially inactive in promoting fusion. Thus, ARL2 is the first regulatory (small) GTPase shown to act inside mitochondria or in the fusion pathway. Finally, using high-resolution, structured illumination microscopy (SIM), we find that ARL2 and mitofusin immunoreactivities present as punctate staining along mitochondria that share a spatial convergence in fluorescence signals. Thus, we propose that ARL2 plays a regulatory role in mitochondrial fusion, acting from the IMS and requiring at least one of the mitofusins in their canonical role in fusion of the outer membranes.

13.
PLoS One ; 12(4): e0175164, 2017.
Article En | MEDLINE | ID: mdl-28380071

Mitochondria are essential, dynamic organelles that respond to a number of stressors with changes in morphology that are linked to several mitochondrial functions, though the mechanisms involved are poorly understood. We show that the levels of the regulatory GTPase ARL2 and its GAP, ELMOD2, are specifically increased at mitochondria in immortalized mouse embryo fibroblasts deleted for Mitofusin 2 (MFN2), but not MFN1. Elevated ARL2 and ELMOD2 in MEFs deleted for MFN2 could be reversed by re-introduction of MFN2, but only when the mitochondrial fragmentation in these MEFs was also reversed, demonstrating that reversal of elevated ARL2 and ELMOD2 requires the fusogenic activity of MFN2. Other stressors with links to mitochondrial morphology were investigated and several, including glucose or serum deprivation, also caused increases in ARL2 and ELMOD2. In contrast, a number of pharmacological inhibitors of energy metabolism caused increases in ARL2 without affecting ELMOD2 levels. Together we interpret these data as evidence of two ARL2-sensitive pathways in mitochondria, one affecting ATP levels that is independent of ELMOD2 and the other leading to mitochondrial fusion involving MFN2 that does involve ELMOD2.


Cytoskeletal Proteins/metabolism , GTP Phosphohydrolases/physiology , GTP-Binding Proteins/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Animals , Gene Knockdown Techniques , Glucose/deficiency , Mice , Mitochondrial Dynamics/physiology
14.
J Biol Chem ; 292(10): 4336-4349, 2017 03 10.
Article En | MEDLINE | ID: mdl-28126905

Microtubule dynamics involves the polymerization and depolymerization of tubulin dimers and is an essential and highly regulated process required for cell viability, architecture, and division. The regulation of the microtubule network also depends on the maintenance of a pool of αß-tubulin heterodimers. These dimers are the end result of complex folding and assembly events, requiring the TCP1 Ring Complex (TriC or CCT) chaperonin and five tubulin-specific chaperones, tubulin binding cofactors A-E (TBCA-TBCE). However, models of the actions of these chaperones are incomplete or inconsistent. We previously purified TBCD from bovine tissues and showed that it tightly binds the small GTPase ARL2 but appears to be inactive. Here, in an effort to identify the functional form of TBCD and using non-denaturing gels and immunoblotting, we analyzed lysates from a number of mouse tissues and cell lines to identify the quaternary state(s) of TBCD and ARL2. We found that both proteins co-migrated in native gels in a complex of ∼200 kDa that also contained ß-tubulin. Using human embryonic kidney cells enabled the purification of the TBCD·ARL2·ß-tubulin trimer found in cell and tissue lysates as well as two other novel TBCD complexes. Characterization of ARL2 point mutants that disrupt binding to TBCD suggested that the ARL2-TBCD interaction is critical for proper maintenance of microtubule densities in cells. We conclude that the TBCD·ARL2·ß-tubulin trimer represents a functional complex whose activity is fundamental to microtubule dynamics.


GTP-Binding Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Molecular Chaperones/metabolism , Tubulin/metabolism , Animals , Cattle , GTP-Binding Proteins/chemistry , HeLa Cells , Humans , Mice , Microtubule-Associated Proteins/chemistry , NIH 3T3 Cells , Protein Binding , Protein Folding , Tubulin/chemistry
15.
J Psychiatr Res ; 84: 113-118, 2017 01.
Article En | MEDLINE | ID: mdl-27718369

Several pro-inflammatory cytokines have been implicated in depression and in antidepressant response. This exploratory analysis assessed: 1) the extent to which baseline cytokine levels predicted positive antidepressant response to ketamine; 2) whether ketamine responders experienced acute changes in cytokine levels not observed in non-responders; and 3) whether ketamine lowered levels of pro-inflammatory cytokines, analogous to the impact of other antidepressants. Data from double-blind, placebo-controlled studies of patients with major depressive disorder (MDD) or bipolar disorder (BD) who received a single infusion of sub-anesthetic dose ketamine were used (N = 80). Plasma levels of the eight cytokines were measured at baseline and at 230 min, 1 day, and 3 days post-ketamine. A significant positive correlation was observed between sTNFR1 and severity of depression at baseline. Cytokine changes did not correlate with changes in mood nor predict mood changes associated with ketamine administration. Ketamine significantly increased IL-6 levels and significantly decreased sTNFR1 levels. IL-6 and TNF-α levels were also significantly higher-and sTNFR1 levels were significantly lower-in BD compared to MDD subjects. The functional significance of this difference is unknown. Changes in cytokine levels post-ketamine were not related to antidepressant response, suggesting they are not a primary mechanism involved in ketamine's acute antidepressant effects. Taken together, the results suggest that further study of cytokine levels is warranted to assess their potential role as a surrogate outcome in the rapid antidepressant response paradigm.


Antidepressive Agents/therapeutic use , Bipolar Disorder/drug therapy , Cytokines/blood , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Ketamine/therapeutic use , Adult , Biomarkers/blood , Bipolar Disorder/blood , Depressive Disorder, Major/blood , Depressive Disorder, Treatment-Resistant/blood , Double-Blind Method , Female , Humans , Linear Models , Male , Middle Aged , Prognosis , Treatment Outcome
16.
J Biol Chem ; 291(43): 22442-22459, 2016 Oct 21.
Article En | MEDLINE | ID: mdl-27563065

Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function.


Cytoplasm/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Nuclear Proteins/metabolism , Poly(A)-Binding Protein I/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus/physiology , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Humans , MCF-7 Cells , Mitochondrial Proton-Translocating ATPases/genetics , Nuclear Proteins/genetics , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Proteins , RNA Helicases , RNA Precursors/genetics , RNA-Binding Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
17.
Small GTPases ; 7(4): 188-196, 2016 10.
Article En | MEDLINE | ID: mdl-27400436

ARL2 is among the most highly conserved proteins, predicted to be present in the last eukaryotic common ancestor, and ubiquitously expressed. Genetic screens in multiple model organisms identified ARL2, and its cytosolic binding partner cofactor D (TBCD), as important in tubulin folding and microtubule dynamics. Both ARL2 and TBCD also localize to centrosomes, making it difficult to dissect these effects. A growing body of evidence also has found roles for ARL2 inside mitochondria, as a regulator of mitochondrial fusion. Other studies have revealed roles for ARL2, in concert with its closest paralog ARL3, in the traffic of farnesylated cargos between membranes and specifically to cilia and photoreceptor cells. Details of each of these signaling processes continue to emerge. We summarize those data here and speculate about the potential for cross-talk or coordination of cell regulation, termed higher order signaling, based upon the use of a common GTPase in disparate cell functions.


GTP-Binding Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitochondria/metabolism , Animals , Centrosome/metabolism , Cilia/metabolism , Humans , Mitochondrial Dynamics , Photoreceptor Cells/metabolism , Signal Transduction
18.
Am J Physiol Cell Physiol ; 310(6): C456-69, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26718629

Members of the large Sec7 domain-containing Arf guanine nucleotide exchange factor (GEF) family have been shown to dimerize through their NH2-terminal dimerization and cyclophilin binding (DCB) and homology upstream of Sec7 (HUS) domains. However, the importance of dimerization in GEF localization and function has not been assessed. We generated a GBF1 mutant (91/130) in which two residues required for oligomerization (K91 and E130 within the DCB domain) were replaced with A and assessed the effects of these mutations on GBF1 localization and cellular functions. We show that 91/130 is compromised in oligomerization but that it targets to the Golgi in a manner indistinguishable from wild-type GBF1 and that it rapidly exchanges between the cytosolic and membrane-bound pools. The 91/130 mutant appears active as it integrates within the functional network at the Golgi, supports Arf activation and COPI recruitment, and sustains Golgi homeostasis and cargo secretion when provided as a sole copy of functional GBF1 in cells. In addition, like wild-type GBF1, the 91/130 mutant supports poliovirus RNA replication, a process requiring GBF1 but believed to be independent of GBF1 catalytic activity. However, oligomerization appears to stabilize GBF1 in cells, and the 91/130 mutant is degraded faster than the wild-type GBF1. Our data support a model in which oligomerization is not a key regulator of GBF1 activity but impacts its function by regulating the cellular levels of GBF1.


Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Cell Line, Tumor , Coat Protein Complex I/metabolism , Cytosol/metabolism , HeLa Cells , Humans , Intracellular Membranes/metabolism , Protein Binding/physiology , Proteolysis
19.
Cell Logist ; 6(4): e1247939, 2016.
Article En | MEDLINE | ID: mdl-28042516

We describe the construction and uses of a series of plasmids for directing expression to varied levels of exogenous proteins targeted to the mitochondrial matrix or intermembrane space. We found that the level of protein expression achieved, the kinetics of expression and mitochondrial import, and half-life after import can each vary with the protein examined. These factors should be considered when directing localization of an exogenous protein to mitochondria for rescue, proteomics, or other approaches. We describe the construction of a collection of plasmids for varied expression of proteins targeted to the mitochondrial matrix or intermembrane space, using previously defined targeting sequences and strength CMV promoters. The limited size of these compartments makes them particularly vulnerable to artifacts from over-expression. We found that different proteins display different kinetics of expression and import that should be considered when analyzing results from this approach. Finally, this collection of plasmids has been deposited in the Addgene plasmid repository to facilitate the ready access and use of these tools.

20.
J Neurosci ; 35(50): 16521-30, 2015 Dec 16.
Article En | MEDLINE | ID: mdl-26674876

Reciprocal connections between the orbitofrontal cortex (OFC) and the basolateral nucleus of the amygdala (BLA) provide a critical circuit for guiding normal behavior when information about expected outcomes is required. Recently, we reported that outcome signaling by OFC neurons is also necessary for learning in the face of unexpected outcomes during a Pavlovian over-expectation task. Key to learning in this task is the ability to build on prior learning to infer or estimate an amount of reward never previously received. OFC was critical to this process. Notably, in parallel work, we found that BLA was not necessary for learning in this setting. This suggested a dissociation in which the BLA might be critical for acquiring information about the outcomes but not for subsequently using it to make novel predictions. Here we evaluated this hypothesis by recording single-unit activity from BLA in rats during the same Pavlovian over-expectation task used previously. We found that spiking activity recorded in BLA in control rats did reflect novel outcome estimates derived from the integration of prior learning, however consistent with a model in which this process occurs in the OFC, these correlates were entirely abolished by ipsilateral OFC lesions. These data indicate that this information about these novel predictions is represented in the BLA, supported via direct or indirect input from the OFC, even though it does not appear to be necessary for learning. SIGNIFICANCE STATEMENT: The basolateral nucleus of the amygdala (BLA) and the orbitofrontal cortex (OFC) are involved in behavior that depends on knowledge of impending outcomes. Recently, we found that only the OFC was necessary for using such information for learning in a Pavlovian over-expectation task. The current experiment was designed to search for neural correlates of this process in the BLA and, if present, to ask whether they would still be dependent on OFC input. We found that although spiking activity in BLA in control rats did reflect the novel outcome estimates underlying learning, these correlates were entirely abolished by OFC lesions.


Amygdala/physiology , Prefrontal Cortex/physiology , Amygdala/cytology , Animals , Conditioning, Classical , Cues , Electric Stimulation , Electrodes, Implanted , Electrophysiological Phenomena , Extinction, Psychological , Functional Laterality/physiology , Learning , Male , Models, Neurological , Neurons/physiology , Patch-Clamp Techniques , Prefrontal Cortex/cytology , Rats , Rats, Long-Evans
...