Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 19(6): 1750-1778, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38472495

RESUMEN

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host-microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network's topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/ .


Asunto(s)
Microbiota , Humanos , Interacciones Microbiota-Huesped/fisiología , Biología Computacional/métodos , Biología de Sistemas/métodos , Multiómica
2.
EMBO Mol Med ; 15(11): e18367, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37859621

RESUMEN

Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-ß2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/metabolismo , Dieta Occidental , Betacelulina/metabolismo , Multiómica , Fibrosis , Neoplasias Hepáticas/patología , Hígado/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Front Nutr ; 10: 1147602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609485

RESUMEN

Background: Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identifying early gene indicators contributing to the onset and progression of NAFLD has the potential to develop novel targets for early therapeutic intervention. We report on the early and late transcriptomic signatures of western diet (WD)-induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice, with time-points at 1 week and 40 weeks on the WD. Control Ldlr-/- mice were maintained on a low-fat diet (LFD) for 1 and 40 weeks. Methods: The approach included quantitation of anthropometric and hepatic histology markers of disease as well as the hepatic transcriptome. Results: Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed multiple cell-specific changes in gene expression after 1 week that persisted to 40 weeks on the WD. These early markers of disease include induction of acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFß) and NASH associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the induction of transcripts associated with metabolic syndrome, including Mmp12, Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient to significantly induce TNFα, a cytokine involved in both hepatic and systemic inflammation. Conclusion: This study revealed early onset changes in the hepatic transcriptome that develop well before any anthropometric or histological evidence of NALFD or NASH and pointed to cell-specific targeting for the prevention of disease progression.

4.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36865280

RESUMEN

Technological advances have generated tremendous amounts of high-throughput omics data. Integrating data from multiple cohorts and diverse omics types from new and previously published studies can offer a holistic view of a biological system and aid in deciphering its critical players and key mechanisms. In this protocol, we describe how to use Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that can perform meta-analysis of cohorts and detect master regulators among measured parameters that govern pathological or physiological responses of host-microbiota (or any multi-omic data) interactions in a particular condition or disease. TkNA first reconstructs the network that represents a statistical model capturing the complex relationships between the different omics of the biological system. Here, it selects differential features and their per-group correlations by identifying robust and reproducible patterns of fold change direction and sign of correlation across several cohorts. Next, a causality-sensitive metric, statistical thresholds, and a set of topological criteria are used to select the final edges that form the transkingdom network. The second part of the analysis involves interrogating the network. Using the network's local and global topology metrics, it detects nodes that are responsible for control of given subnetwork or control of communication between kingdoms and/or subnetworks. The underlying basis of the TkNA approach involves fundamental principles including laws of causality, graph theory and information theory. Hence, TkNA can be used for causal inference via network analysis of any host and/or microbiota multi-omics data. This quick and easy-to-run protocol requires very basic familiarity with the Unix command-line environment.

5.
J Exp Med ; 219(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35657352

RESUMEN

Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Microbiota , Adipocitos/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Insulina , Resistencia a la Insulina/fisiología , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones
6.
Nat Med ; 28(3): 545-556, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35228752

RESUMEN

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic analyses of the combined data show that bacteria associated with favorable response are confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., were associated with favorable and unfavorable clinical response, respectively, and with distinct immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one supervised learning algorithms trained on batch-corrected microbiome data consistently predicted outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities (microbiotypes) with nonuniform geographical distribution were associated with favorable and unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light on the complex interaction between the gut microbiome and response to cancer immunotherapy, providing a roadmap for future studies.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Microbiota , Bacterias/genética , Microbioma Gastrointestinal/genética , Humanos , Inmunoterapia/efectos adversos , Melanoma/tratamiento farmacológico
7.
Front Immunol ; 11: 606441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552063

RESUMEN

The diet represents one environmental risk factor controlling the progression of type 1 diabetes (T1D) in genetically susceptible individuals. Consequently, understanding which specific nutritional components promote or prevent the development of disease could be used to make dietary recommendations in prediabetic individuals. In the current study, we hypothesized that the immunoregulatory phytochemcial, indole-3-carbinol (I3C) which is found in cruciferous vegetables, will regulate the progression of T1D in nonobese diabetic (NOD) mice. During digestion, I3C is metabolized into ligands for the aryl hydrocarbon receptor (AhR), a transcription factor that when systemically activated prevents T1D. In NOD mice, an I3C-supplemented diet led to strong AhR activation in the small intestine but minimal systemic AhR activity. In the absence of this systemic response, the dietary intervention led to exacerbated insulitis. Consistent with the compartmentalization of AhR activation, dietary I3C did not alter T helper cell differentiation in the spleen or pancreatic draining lymph nodes. Instead, dietary I3C increased the percentage of CD4+RORγt+Foxp3- (Th17 cells) in the lamina propria, intraepithelial layer, and Peyer's patches of the small intestine. The immune modulation in the gut was accompanied by alterations to the intestinal microbiome, with changes in bacterial communities observed within one week of I3C supplementation. A transkingdom network was generated to predict host-microbe interactions that were influenced by dietary I3C. Within the phylum Firmicutes, several genera (Intestinimonas, Ruminiclostridium 9, and unclassified Lachnospiraceae) were negatively regulated by I3C. Using AhR knockout mice, we validated that Intestinimonas is negatively regulated by AhR. I3C-mediated microbial dysbiosis was linked to increases in CD25high Th17 cells. Collectively, these data demonstrate that site of AhR activation and subsequent interactions with the host microbiome are important considerations in developing AhR-targeted interventions for T1D.


Asunto(s)
Bacterias/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Diabetes Mellitus Tipo 1/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Indoles/toxicidad , Intestino Delgado/efectos de los fármacos , Receptores de Hidrocarburo de Aril/agonistas , Células Th17/efectos de los fármacos , Animales , Bacterias/inmunología , Bacterias/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Exposición Dietética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis , Interacciones Huésped-Patógeno , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Ratones Endogámicos NOD , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...