Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 150
1.
Eur J Clin Nutr ; 78(2): 155-162, 2024 Feb.
Article En | MEDLINE | ID: mdl-37923932

BACKGROUND: L-Leucine (Leu) supplementation may benefit fat-free mass (FFM) per se and glucose metabolism. OBJECTIVES: To determine whether Leu supplementation during energy restriction blunted the loss of FFM, enhanced the loss of fat mass (FM) and improved glucose tolerance. DESIGN: Thirty-seven adults, aged 20-65 years, with increased waist circumference and at least one other metabolic syndrome (MetS) component, were selected. We employed a two-arm parallel, double blind, randomized control trial (RCT) design. Participants were randomly assigned to an intervention group (leucine - 3 g/d) or placebo (lactose - 2.67 g/d), while following an individualised energy restricted diet for an 8-week period. Detailed body composition (DEXA), oral glucose tolerance test (OGTT), insulin and components of MetS were measured before and after the trial. Analysis of covariance (ANCOVA) assessed the effect of Leu on an intention-to-treat (ITT) principle. Bootstrapping method with 1000 bootstrap samples was used to derive parameter estimates, standard errors, p-values, and 95% confidence intervals for all outcomes. RESULTS: Adjusted for baseline values and other covariates, FFM (p = 0.045) and lean tissue mass (LTM) (p = 0.050) were significantly higher following Leu. These outcomes were modified by a significant treatment x sex interaction that indicated Leu had the greater effect in men. However, on adjustment for body composition changes, there was no difference in insulin sensitivity, oral glucose tolerance, or change in MetS components following Leu. CONCLUSION: Short-term leucine supplementation during energy restriction resulted in a greater preservation of FFM and LTM particularly in men, but did not impact glucose metabolism.


Metabolic Syndrome , Male , Adult , Humans , Leucine/pharmacology , Body Composition , Dietary Supplements , Glucose
2.
Clin Sci (Lond) ; 137(10): 807-821, 2023 05 31.
Article En | MEDLINE | ID: mdl-37219940

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.


B-Lymphocytes , Lipid Metabolism , Glycosylation , Biological Transport , Antibodies , Glucose
3.
Proc Nutr Soc ; 82(1): 22-31, 2023 02.
Article En | MEDLINE | ID: mdl-36285520

Nutrients can impact and regulate cellular metabolism and cell function which is particularly important for the activation and function of diverse immune subsets. Among the critical nutrients for immune cell function and fate, glutamine is possibly the most widely recognised immunonutrient, playing key roles in TCA cycle, heat shock protein responses and antioxidant systems. In addition, glutamine is also involved with inter-organ ammonia transport, and this is particularly important for not only immune cells, but also to the brain, especially in catabolic situations such as critical care and extenuating exercise. The well characterised fall in blood glutamine availability has been the main reason for studies to investigate the possible effects of glutamine replacement via supplementation but many of the results are in poor agreement. At the same time, a range of complex pathways involved in glutamine metabolism have been revealed via supplementation studies. This article will briefly review the function of glutamine in the immune system, with emphasis on metabolic mechanisms, and the emerging role of glutamine in the brain glutamate/gamma-amino butyric acid cycle. In addition, relevant aspects of glutamine supplementation are discussed.


Glutamic Acid , Glutamine , Humans , Glutamine/metabolism , Glutamic Acid/metabolism , Brain/metabolism
4.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article En | MEDLINE | ID: mdl-36555149

In animal studies, HDAC inhibitors such as butyrate have been reported to reduce plasma cholesterol, while conferring protection from diabetes, but studies on the underlying mechanisms are lacking. This study compares the influence of butyrate and other HDAC inhibitors to that of statins on cholesterol metabolism in multiple cell lines, but primarily in HepG2 hepatic cells due to the importance of the liver in cholesterol metabolism. Sodium butyrate reduced HepG2 cholesterol content, as did sodium valproate and the potent HDAC inhibitor trichostatin A, suggesting HDAC inhibition as the exacting mechanism. In contrast to statins, which increase SREBP-2 regulated processes, HDAC inhibition downregulated SREBP-2 targets such as HMGCR and the LDL receptor. Moreover, in contrast to statin treatment, butyrate did not increase cholesterol uptake by HepG2 cells, consistent with its failure to increase LDL receptor expression. Sodium butyrate also reduced ABCA1 and SRB1 protein expression in HepG2 cells, but these effects were not consistent across all cell types. Overall, the underlying mechanism of cell cholesterol lowering by sodium butyrate and HDAC inhibition is consistent with impaired SREBP-2 signalling, and calls into question the possible use of butyrate for lowering of serum LDL cholesterol in humans.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Butyric Acid/pharmacology , Cholesterol/metabolism , Histone Deacetylase Inhibitors/pharmacology , Receptors, LDL/metabolism , Sterol Regulatory Element Binding Protein 1 , Sterol Regulatory Element Binding Protein 2/metabolism , Hep G2 Cells
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article En | MEDLINE | ID: mdl-36555450

Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.


Alzheimer Disease , Diabetes Mellitus, Type 2 , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Insulin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Brain/pathology , Insulin, Regular, Human/therapeutic use
6.
Neurobiol Aging ; 114: 38-48, 2022 06.
Article En | MEDLINE | ID: mdl-35381406

Mounting evidence implicates insulin resistance (IR) with reduced cognition, increased dementia risk and changes in Alzheimer's disease biomarkers. It's unclear how, and at what stage IR has the greatest impact on Alzheimer's disease biomarker progression indicative of cognitive decline. Exploration of potential factors influencing this relationship continue. We have previously reported IR to be associated with cognitive function, and increased CSF tau in a cognitively unimpaired cohort. Now, we aimed to determine if CSF total (t-tau) or phosphorylated tau (p-tau) mediated the relationship between HOMA-IR and cognition, and explore sex or amyloid-ß (Aß) biomarkers as moderators of this relationship. Mediation analysis demonstrated that CSF tau does not directly influence the association between HOMA-IR and cognition. Moderation analysis revealed CSF Aß42 moderates the relationships between HOMA-IR and CSF tau. The combination of lower CSF Aß42 and higher HOMA-IR was associated with increases in CSF tau. The CSF Aß42 moderation finding has potential to be considered when assessing type 2 diabetic risk for tau pathology and cognitive decline.


Alzheimer Disease , Cognitive Dysfunction , Insulin Resistance , Alzheimer Disease/pathology , Amyloid beta-Peptides , Biomarkers , Cognition , Humans , Peptide Fragments , tau Proteins
7.
Antioxidants (Basel) ; 11(1)2022 Jan 04.
Article En | MEDLINE | ID: mdl-35052612

Irreversible pancreatic ß-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The ß-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The ß-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the ß-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key ß-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.

8.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article En | MEDLINE | ID: mdl-34948127

Histone deacetylase (HDAC) inhibitors such as butyrate have been reported to reduce diabetes risk and protect insulin-secreting pancreatic ß cells in animal models. However, studies on insulin-secreting cells in vitro have found that butyrate treatment resulted in impaired or inappropriate insulin secretion. Our study explores the effects of butyrate on insulin secretion by BRIN BD-11 rat pancreatic ß cells and examined effects on the expression of genes implicated in ß cell function. Robust HDAC inhibition with 5 mM butyrate or trichostatin A for 24 h in ß cells decreased basal insulin secretion and content, as well as insulin secretion in response to acute stimulation. Treatment with butyrate also increased expression of the disallowed gene hexokinase I, possibly explaining the impairment to insulin secretion, and of TXNIP, which may increase oxidative stress and ß cell apoptosis. In contrast to robust HDAC inhibition (>70% after 24 h), low-dose and acute high-dose treatment with butyrate enhanced nutrient-stimulated insulin secretion. In conclusion, although protective effects of HDAC inhibition have been observed in vivo, potent HDAC inhibition impairs ß cell function in vitro. The chronic low dose and acute high dose butyrate treatments may be more reflective of in vivo effects.


Butyric Acid/adverse effects , Hexokinase/metabolism , Histone Deacetylase Inhibitors/adverse effects , Insulin-Secreting Cells/enzymology , Oxidative Stress/drug effects , Animals , Butyric Acid/pharmacology , Cell Cycle Proteins/metabolism , Hep G2 Cells , Histone Deacetylase Inhibitors/pharmacology , Humans , Insulin-Secreting Cells/pathology , Rats
9.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article En | MEDLINE | ID: mdl-34445165

Macrophages and lymphocytes demonstrate metabolic plasticity, which is dependent partly on their state of activation and partly on the availability of various energy yielding and biosynthetic substrates (fatty acids, glucose, and amino acids). These substrates are essential to fuel-based metabolic reprogramming that supports optimal immune function, including the inflammatory response. In this review, we will focus on metabolism in macrophages and lymphocytes and discuss the role of fatty acids in governing the phenotype, activation, and functional status of these important cells. We summarize the current understanding of the pathways of fatty acid metabolism and related mechanisms of action and also explore possible new perspectives in this exciting area of research.


Fatty Acids/immunology , Lymphocytes/immunology , Macrophages/immunology , Animals , Fatty Acids/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Lymphocyte Activation , Lymphocytes/metabolism , Macrophage Activation , Macrophages/metabolism
10.
Eur J Clin Nutr ; 75(9): 1328-1331, 2021 09.
Article En | MEDLINE | ID: mdl-34163016

Various nutrients can change cell structure, cellular metabolism, and cell function which is particularly important for cells of the immune system as nutrient availability is associated with the activation and function of diverse immune subsets. The most important nutrients for immune cell function and fate appear to be glucose, amino acids, fatty acids, and vitamin D. This perspective will describe recently published information describing the mechanism of action of prominent nutritional intervention agents where evidence exists as to their action and potency.


Glucose , Nutrients , Fatty Acids , Humans , Immune System , Immunity
11.
Nutr Diabetes ; 11(1): 22, 2021 06 23.
Article En | MEDLINE | ID: mdl-34168118

Various nutrients can change cell structure, cellular metabolism, and cell function which is particularly important for cells of the immune system as nutrient availability is associated with the activation and function of diverse immune subsets. The most important nutrients for immune cell function and fate appear to be glucose, amino acids, fatty acids, and vitamin D. This perspective will describe recently published information describing the mechanism of action of prominent nutritional intervention agents where evidence exists as to their action and potency.


Immune System/metabolism , Nutrients/metabolism , Amino Acids/metabolism , Arginine/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Glutamine/metabolism , Humans , Immune System/cytology , Signal Transduction , Vitamin D/metabolism
12.
Nutrients ; 13(4)2021 Mar 28.
Article En | MEDLINE | ID: mdl-33800650

Aging is associated with impairment in skeletal muscle mass and contractile function, predisposing to fat mass gain, insulin resistance and diabetes. The impact of Vitamin D (VitD) supplementation on skeletal muscle mass and function in older adults is still controversial. The aim of this review was to summarize data from randomized clinical trials, animal dietary intervention and cell studies in order to clarify current knowledge on the effects of VitD on skeletal muscle as reported for these three types of experiments. A structured research of the literature in Medline via PubMed was conducted and a total of 43 articles were analysed (cells n = 18, animals n = 13 and humans n = 13). The results as described by these key studies demonstrate, overall, at cell and animal levels, that VitD treatments had positive effects on the development of muscle fibres in cells in culture, skeletal muscle force and hypertrophy. Vitamin D supplementation appears to regulate not only lipid and mitochondrial muscle metabolism but also to have a direct effect on glucose metabolism and insulin driven signalling. However, considering the human perspective, results revealed a predominance of null effects of the vitamin on muscle in the ageing population, but experimental design may have influenced the study outcome in humans. Well-designed long duration double-blinded trials, standardised VitD dosing regimen, larger sample sized studies and standardised measurements may be helpful tools to accurately determine results and compare to those observed in cells and animal dietary intervention models.


Dietary Supplements , Muscle, Skeletal/drug effects , Nutritional Physiological Phenomena/drug effects , Vitamin D/pharmacology , Vitamins/pharmacology , Aging/drug effects , Animals , Cell Culture Techniques , Humans , Models, Animal , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects
13.
J Clin Med ; 10(3)2021 Jan 23.
Article En | MEDLINE | ID: mdl-33498782

Congenital Generalized Lipodystrophy type 2 (CGL2) is the most severe form of lipodystrophy and is caused by mutations in the BSCL2 gene. Affected patients exhibit a near complete lack of adipose tissue and suffer severe metabolic disease. A recent study identified infection as a major cause of death in CGL2 patients, leading us to examine whether Bscl2 loss could directly affect the innate immune response. We generated a novel mouse model selectively lacking Bscl2 in the myeloid lineage (LysM-B2KO) and also examined the function of bone-marrow-derived macrophages (BMDM) isolated from global Bscl2 knockout (SKO) mice. LysM-B2KO mice failed to develop lipodystrophy and metabolic disease, providing a model to study the direct role of Bscl2 in myeloid lineage cells. Lipopolysaccharide-mediated stimulation of inflammatory cytokines was not impaired in LysM-B2KO mice or in BMDM isolated from either LysM-B2KO or SKO mice. Additionally, intracellular fate and clearance of bacteria in SKO BMDM challenged with Staphylococcus aureus was indistinguishable from that in BMDM isolated from littermate controls. Overall, our findings reveal that selective Bscl2 deficiency in macrophages does not critically impact the innate immune response to infection. Instead, an increased susceptibility to infection in CGL2 patients is likely to result from severe metabolic disease.

14.
Clin Sci (Lond) ; 135(2): 305-325, 2021 01 29.
Article En | MEDLINE | ID: mdl-33480424

A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.


Antiviral Agents/pharmacology , Glutamine/metabolism , Metabolic Networks and Pathways/drug effects , Virus Replication/drug effects , Cell Line, Tumor , Host-Pathogen Interactions , Humans , Neoplasms/metabolism , Neoplasms/virology , Virulence/drug effects , Viruses/drug effects , Viruses/pathogenicity
15.
Clin Sci (Lond), v. 135, n. 2, p. 305-325, jan. 2021
Article En | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-3481

A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.

16.
Int J Mol Sci ; 21(21)2020 Nov 02.
Article En | MEDLINE | ID: mdl-33147803

Type 2 diabetes (T2D) and Alzheimer's disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (ß-Amyloid; Aß). Both IAPP and Aß can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.


Alzheimer Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , Heat-Shock Proteins/metabolism , Alzheimer Disease/complications , Amyloid beta-Protein Precursor/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Extracellular Space/metabolism , HSP72 Heat-Shock Proteins/metabolism , Humans , Inflammation , Models, Biological , Molecular Chaperones/metabolism , Protein Binding , Protein Folding , tau Proteins/metabolism
17.
Reprod Biomed Online ; 41(6): 1101-1111, 2020 Dec.
Article En | MEDLINE | ID: mdl-33012659

RESEARCH QUESTION: To determine the relationship between vitamin D (VitD) status and embryological, clinical pregnancy and live birth outcomes in women undergoing IVF. DESIGN: Cross-sectional, observational study conducted at a university-affiliated private IVF clinic. A total of 287 women underwent 287 IVF cycles and received a fresh embryo transfer. Patients had their serum 25-hydroxyvitamin D2/D3 (VitD) determined on the day of oocyte retrieval, which was analysed in relation to blastocyst development rate, clinical pregnancy and live birth outcomes. RESULTS: In stepwise, multivariable logistic regression models, increases in blastocyst development rate, number and quality, along with embryo cryopreservation and utilization rates were associated with women with a sufficient VitD status (≥20 ng/ml). For a single increase in the number of blastocysts generated per cycle or embryos cryopreserved per cycle, the likelihood for the patient to be VitD sufficient was increased by 32% (odds ratio [OR] 1.32, 95% confidence interval [CI] 1.10-1.58, P = 0.002 and OR 1.33, 95% CI 1.10-1.60, P = 0.004, respectively). Clinical pregnancy (40.7% versus 30.8%, P = 0.086) and live birth rates (32.9% versus 25.8%, P = 0.195) in the sufficient VitD group versus the insufficient group were not significantly different and VitD sufficiency was not significantly associated with these outcomes. CONCLUSION: A strong relationship was observed between blastocyst development and VitD sufficiency. However, there was no association between VitD and clinical pregnancy or live birth outcomes. Further larger studies are needed to investigate whether the observed effect on blastocyst development may have downstream implications on subsequent clinical pregnancy or live birth rates, and on a potential mechanism where sufficient VitD concentrations are linked to improved IVF outcomes.


Embryonic Development/physiology , Fertilization in Vitro , Vitamin D/blood , Adult , Australia/epidemiology , Blastocyst/physiology , Cross-Sectional Studies , Female , Fertilization in Vitro/statistics & numerical data , Humans , Infant, Newborn , Infertility/blood , Infertility/epidemiology , Infertility/therapy , Male , Nutritional Status/physiology , Pregnancy , Treatment Outcome
18.
Nutrients ; 12(10)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053823

Supplementation with the most efficient form of Vitamin D (VitD3) results in improvements in energy metabolism, muscle mass and strength in VitD deficient individuals. Whether similar outcomes occur in VitD sufficient individuals' remains to be elucidated. The aim of this study is to determine the effect of VitD3 supplementation on resting metabolic rate (RMR), body composition and strength in VitD sufficient physically active young adults. Participants completed pre-supplementation testing before being matched for sunlight exposure and randomly allocated in a counterbalanced manner to the VitD3 or placebo group. Following 12 weeks of 50 IU/kg body-mass VitD3 supplementation, participants repeated the pre-supplementation testing. Thirty-one adults completed the study (19 females and 12 males; mean ± standard deviation (SD); age = 26.6 ± 4.9 years; BMI = 24.2 ± 4.1 kg·m2). The VitD group increased serum total 25(OH)D by 30 nmol/L while the placebo group decreased total serum concentration by 21 nmol/L, reaching 123 (51) and 53 (42.2) nmol/L, respectively. There were no significant changes in muscle strength or power, resting metabolic rate and body composition over the 12-week period. Physically active young adults that are VitD sufficient have demonstrated that no additional physiological effects of achieving supraphysiological serum total 25(OH)D concentrations after VitD3 supplementation.


Basal Metabolism/drug effects , Body Composition/drug effects , Dietary Supplements , Muscle Strength/drug effects , Vitamin D/pharmacology , Adult , Calcitriol , Energy Metabolism , Female , Humans , Male , Nutrition Therapy , Surveys and Questionnaires , Vitamin D/blood , Young Adult
19.
Pharmacol Res ; 160: 105174, 2020 10.
Article En | MEDLINE | ID: mdl-32860943

Metabolic syndrome (MetS) and the associated incidence of cardiovascular disease and type 2 diabetes represents a significant contributor to morbidity and mortality worldwide. Butyrate, a short-chain fatty acid produced by the gut microbiome, has long been known to promote growth in farmed animals and more recently has been reported to improve body weight and composition, lipid profile, insulin sensitivity and glycaemia in animal models of MetS. In vitro studies have examined the influence of butyrate on intestinal cells, adipose tissue, skeletal muscle, hepatocytes, pancreatic islets and blood vessels, highlighting genes and pathways that may contribute to its beneficial effects. Butyrate's influences in these cells have been attributed primarily to its epigenetic effects as a histone deacetylase inhibitor, as well as its role as an agonist of free fatty acid receptors, but clear mechanistic evidence is lacking. There is also uncertainty whether results from animal studies can translate to human trials due to butyrate's poor systemic availability and rapid clearance. Hitherto, several small-scale human clinical trials have failed to show significant benefits in MetS patients. Further trials are clearly needed, including with formulations designed to improve butyrate's availability. Regardless, dietary intervention to increase the rate of butyrate production may be a beneficial addition to current treatment. This review outlines the current body of evidence on the suitability of butyrate supplementation for MetS, looking at mechanistic effects on the various components of MetS and highlighting gaps in the knowledge and roadblocks to its use in humans.


Butyrates/metabolism , Gastrointestinal Microbiome , Metabolic Syndrome/microbiology , Metabolic Syndrome/therapy , Animals , Butyrates/therapeutic use , Dietary Supplements , Humans , Metabolic Syndrome/metabolism
20.
Cell Physiol Biochem ; 54(4): 629-647, 2020 Jun 27.
Article En | MEDLINE | ID: mdl-32589830

Neutrophils were traditionally considered as short-lived cells with abundant secretory and protein synthetic activity. Recent studies, however, indicate neutrophils are in reality a heterogeneous population of cells. Neutrophils differentiate from pluripotent stem cells in the bone marrow, and can further mature in the blood stream and can have different phenotypes in health and disease conditions. Neutrophils undergo primary functions such as phagocytosis, production of reactive oxygen species (ROS), release of lipid mediators and inflammatory proteins (mainly cytokines), and apoptosis. Neutrophils stimulate other neutrophils and trigger a cascade of immune and inflammatory responses. The underpinning intracellular metabolisms that support these neutrophil functions are herein reported. It has been known for many decades that neutrophils utilize glucose as a primary fuel and produce lactate as an end product of glycolysis. Neutrophils metabolize glucose through glycolysis and the pentose- phosphate pathway (PPP). Mitochondrial glucose oxidation is very low. The PPP provides the reduced nicotinamide adenine dinucleotide phosphate (NADPH) for the NADPH-oxidase (NOX) complex activity to produce superoxide from oxygen. These cells also utilize glutamine and fatty acids to produce the required adenosine triphosphate (ATP) and precursors for the synthesis of molecules that trigger functional outcomes. Neutrophils obtained from rat intraperitoneal cavity and incubate for 1 hour at 37°C metabolize glutamine at higher rate than that of glucose. Glutamine delays neutrophil apoptosis and maintains optimal NOX activity for superoxide production. Under limited glucose provision, neutrophils move to fatty acid oxidation (FAO) to obtain the required energy for the cell function. FAO is mainly associated with neutrophil differentiation and maturation. Hypoxia, hormonal dysfunction, and physical exercise markedly change neutrophil metabolism. It is now become clear that neutrophil metabolism underlies the heterogeneity of neutrophil phenotypes and should be intense focus of investigation.


Glucose/metabolism , Glutamine/metabolism , NADPH Oxidases/metabolism , Neutrophils/metabolism , Animals , Cell Hypoxia/physiology , Cytokines/metabolism , Fatty Acids/metabolism , Hormones/pharmacology , Humans , Mitochondria/metabolism , NADP/metabolism , Neutrophils/cytology , Neutrophils/enzymology , Neutrophils/immunology , Physical Conditioning, Animal/physiology , Reactive Oxygen Species/metabolism , Superoxides/metabolism
...