Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349818

RESUMEN

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Asunto(s)
Haemophilus influenzae , Ácido N-Acetilneuramínico , Haemophilus influenzae/metabolismo , Microscopía por Crioelectrón , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo
2.
Nat Commun ; 14(1): 1120, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849793

RESUMEN

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.


Asunto(s)
Proteínas de Transporte de Membrana , Ácido N-Acetilneuramínico , Transporte Biológico , Archaea , Adenosina Trifosfato
3.
ACS Chem Biol ; 17(7): 1890-1900, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35675124

RESUMEN

Antibiotic resistance is a major worldwide concern, and new drugs with mechanistically novel modes of action are urgently needed. Here, we report the structure-based drug design, synthesis, and evaluation in vitro and in cellular systems of sialic acid derivatives able to inhibit the bacterial sialic acid symporter SiaT. We designed and synthesized 21 sialic acid derivatives and screened their affinity for SiaT by a thermal shift assay and elucidated the inhibitory mechanism through binding thermodynamics, computational methods, and inhibitory kinetic studies. The most potent compounds, which have a 180-fold higher affinity compared to the natural substrate, were tested in bacterial growth assays and indicate bacterial growth delay in methicillin-resistant Staphylococcus aureus. This study represents the first example and a promising lead in developing sialic acid uptake inhibitors as novel antibacterial agents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Cinética , Pruebas de Sensibilidad Microbiana , Ácido N-Acetilneuramínico/farmacología
4.
Front Mol Biosci ; 8: 699222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268334

RESUMEN

Multicomponent transporters are used by bacteria to transport a wide range of nutrients. These systems use a substrate-binding protein to bind the nutrient with high affinity and then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are linked to the colonisation potential and pathogenicity of bacteria in humans and may be candidates for antimicrobial targeting. Here we review current research into bacterial multicomponent transport systems, with an emphasis on the interaction at the membrane, as well as new perspectives on the role of lipids and higher oligomers in these complex systems.

5.
J Biol Chem ; 295(10): 3301-3315, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31949045

RESUMEN

In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Staphylococcus aureus/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Hexosaminas/química , Hexosaminas/metabolismo , Cinética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...