Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
J Neurol ; 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38607431

Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.

2.
ACS Sens ; 9(3): 1239-1251, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38436286

Extracellular vesicles (EVs) are nanometric lipid vesicles that shuttle cargo between cells. Their analysis could shed light on health and disease conditions, but EVs must first be preserved, extracted, and often preconcentrated. Here we first compare plasma preservation agents, and second, using both plasma and cell supernatant, four EV extraction methods, including (i) ultracentrifugation (UC), (ii) size-exclusion chromatography (SEC), (iii) centrifugal filtration (LoDF), and (iv) accousto-sorting (AcS). We benchmarked them by characterizing the integrity, size distribution, concentration, purity, and expression profiles for nine proteins of EVs, as well as the overall throughput, time-to-result, and cost. We found that the difference between ethylenediaminetetraacetic acid (EDTA) and citrate anticoagulants varies with the extraction method. In our hands, ultracentrifugation produced a high yield of EVs with low contamination; SEC is low-cost, fast, and easy to implement, but the purity of EVs is lower; LoDF and AcS are both compatible with process automation, small volume requirement, and rapid processing times. When using plasma, LoDF was susceptible to clogging and sample contamination, while AcS featured high purity but a lower yield of extraction. Analysis of protein profiles suggests that the extraction methods extract different subpopulations of EVs. Our study highlights the strengths and weaknesses of sample preprocessing methods, and the variability in concentration, purity, and EV expression profiles of the extracted EVs. Preanalytical parameters such as collection or preprocessing protocols must be considered as part of the entire process in order to address EV diversity and their use as clinically actionable indicators.


Extracellular Vesicles , Extracellular Vesicles/metabolism , Chromatography, Gel , Proteins/analysis , Ultracentrifugation/methods
3.
Epilepsia ; 65(2): 266-280, 2024 Feb.
Article En | MEDLINE | ID: mdl-38036453

The devastating developmental and epileptic encephalopathy of infantile epileptic spasms syndrome (IESS) has numerous causes, including, but not limited to, brain injury, metabolic, and genetic conditions. Given the stereotyped electrophysiologic, age-dependent, and clinical findings, there likely exists one or more final common pathways in the development of IESS. The identity of this final common pathway is unknown, but it may represent a novel therapeutic target for infantile spasms. Previous research on IESS has focused largely on identifying the neuroanatomic substrate using specialized neuroimaging techniques and cerebrospinal fluid analysis in human patients. Over the past three decades, several animal models of IESS were created with an aim to interrogate the underlying pathogenesis of IESS, to identify novel therapeutic targets, and to test various treatments. Each of these models have been successful at recapitulating multiple aspects of the human IESS condition. These animal models have implicated several different molecular pathways in the development of infantile spasms. In this review we outline the progress that has been made thus far using these animal models and discuss future directions to help researchers identify novel treatments for drug-resistant IESS.


Brain Injuries , Spasms, Infantile , Animals , Humans , Spasms, Infantile/drug therapy , Disease Models, Animal , Syndrome , Spasm
4.
Front Pediatr ; 11: 1171920, 2023.
Article En | MEDLINE | ID: mdl-37790694

Objective: Individuals with neurodevelopmental disorders such as global developmental delay (GDD) present both genotypic and phenotypic heterogeneity. This diversity has hampered developing of targeted interventions given the relative rarity of each individual genetic etiology. Novel approaches to clinical trials where distinct, but related diseases can be treated by a common drug, known as basket trials, which have shown benefits in oncology but have yet to be used in GDD. Nonetheless, it remains unclear how individuals with GDD could be clustered. Here, we assess two different approaches: agglomerative and divisive clustering. Methods: Using the largest cohort of individuals with GDD, which is the Deciphering Developmental Disorders (DDD), characterized using a systematic approach, we extracted genotypic and phenotypic information from 6,588 individuals with GDD. We then used a k-means clustering (divisive) and hierarchical agglomerative clustering (HAC) to identify subgroups of individuals. Next, we extracted gene network and molecular function information with regard to the clusters identified by each approach. Results: HAC based on phenotypes identified in individuals with GDD revealed 16 clusters, each presenting with one dominant phenotype displayed by most individuals in the cluster, along with other minor phenotypes. Among the most common phenotypes reported were delayed speech, absent speech, and seizure. Interestingly, each phenotypic cluster molecularly included several (3-12) gene sub-networks of more closely related genes with diverse molecular function. k-means clustering also segregated individuals harboring those phenotypes, but the genetic pathways identified were different from the ones identified from HAC. Conclusion: Our study illustrates how divisive (k-means) and agglomerative clustering can be used in order to group individuals with GDD for future basket trials. Moreover, the result of our analysis suggests that phenotypic clusters should be subdivided into molecular sub-networks for an increased likelihood of successful treatment. Finally, a combination of both agglomerative and divisive clustering may be required for developing of a comprehensive treatment.

5.
Front Pediatr ; 11: 1172154, 2023.
Article En | MEDLINE | ID: mdl-37609366

Objective: Gain a better understanding of sex-specific differences in individuals with global developmental delay (GDD), with a focus on phenotypes and genotypes. Methods: Using the Deciphering Developmental Disorders (DDD) dataset, we extracted phenotypic information from 6,588 individuals with GDD and then identified statistically significant variations in phenotypes and genotypes based on sex. We compared genes with pathogenic variants between sex and then performed gene network and molecular function enrichment analysis and gene expression profiling between sex. Finally, we contrasted individuals with autism as an associated condition. Results: We identified significantly differentially expressed phenotypes in males vs. females individuals with GDD. Autism and macrocephaly were significantly more common in males whereas microcephaly and stereotypies were more common in females. Importantly, 66% of GDD genes with pathogenic variants overlapped between both sexes. In the cohort, males presented with only slightly increased X-linked genes (9% vs. 8%, respectively). Individuals from both sexes harbored a similar number of pathogenic variants overall (3) but females presented with a significantly higher load for GDD genes with high intolerance to loss of function. Sex difference in gene expression correlated with genes identified in a sex specific manner. While we identified sex-specific GDD gene mutations, their pathways overlapped. Interestingly, individuals with GDD but also co-morbid autism phenotypes, we observed distinct mutation load, pathways and phenotypic presentation. Conclusion: Our study shows for the first time that males and females with GDD present with significantly different phenotypes. Moreover, while most GDD genes overlapped, some genes were found uniquely in each sex. Surprisingly they shared similar molecular functions. Sorting genes by predicted tolerance to loss of function (pLI) led to identifying an increased mutation load in females with GDD, suggesting potentially a tolerance to GDD genes of higher pLI compared to overall GDD genes. Finally, we show that considering associated conditions (for instance autism) may influence the genomic underpinning found in individuals with GDD and highlight the importance of comprehensive phenotyping.

6.
bioRxiv ; 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37131604

We present the nELISA, a high-throughput, high-fidelity, and high-plex protein profiling platform. DNA oligonucleotides are used to pre-assemble antibody pairs on spectrally encoded microparticles and perform displacement-mediated detection. Spatial separation between non-cognate antibodies prevents the rise of reagent-driven cross-reactivity, while read-out is performed cost-efficiently and at high-throughput using flow cytometry. We assembled an inflammatory panel of 191 targets that were multiplexed without cross-reactivity or impact on performance vs 1-plex signals, with sensitivities as low as 0.1pg/mL and measurements spanning 7 orders of magnitude. We then performed a large-scale secretome perturbation screen of peripheral blood mononuclear cells (PBMCs), with cytokines as both perturbagens and read-outs, measuring 7,392 samples and generating ~1.5M protein datapoints in under a week, a significant advance in throughput compared to other highly multiplexed immunoassays. We uncovered 447 significant cytokine responses, including multiple putatively novel ones, that were conserved across donors and stimulation conditions. We also validated the nELISA's use in phenotypic screening, and propose its application to drug discovery.

7.
Lab Chip ; 23(6): 1547-1560, 2023 03 14.
Article En | MEDLINE | ID: mdl-36723136

Sandwich immunoassays such as the enzyme-linked immunosorbent assay (ELISA) have been miniaturized and performed in a lab-on-a-chip format, but the execution of the multiple assay steps typically requires a computer or complex peripherals. Recently, an ELISA for detecting antibodies was encoded structurally in a chip thanks to the microfluidic chain reaction (Yafia et al. Nature, 2022, 605, 464-469), but the need for precise pipetting and intolerance to commonly used surfactant concentrations limit the potential for broader adoption. Here, we introduce the ELISA-on-a-chip with aliquoting functionality that simplifies chip loading and pipetting, accommodates higher surfactant concentrations, includes barrier channels that delay the contact between solutions and prevent undesired mixing, and that executed a quantitative, high-sensitivity assay for the SARS-CoV-2 nucleocapsid protein in 4×-diluted saliva. Upon loading the chip using disposable pipettes, capillary flow draws each reagent and the sample into a separate volumetric measuring reservoir for detection antibody (70 µL), enzyme conjugate (50 µL), substrate (80 µL), and sample (210 µL), and splits washing buffer into 4 different reservoirs of 40, 40, 60, and 20 µL. The excess volume is autonomously drained via a structurally encoded capillaric aliquoting circuit, creating aliquots with an accuracy of >93%. Next, the user click-connects the assay module, comprising a nitrocellulose membrane with immobilized capture antibodies and a capillary pump, to the chip which triggers the step-by-step, timed flow of all aliquoted solutions to complete the assay in 1.5 h. A colored precipitate forming a line on a nitrocellulose strip serves as an assay readout, and upon digitization, yielded a binding curve with a limit of detection of 54 and 91 pg mL-1 for buffer and diluted saliva respectively, vastly outperforming rapid tests. The ELISA chip is 3D-printed, modular, adaptable to other targets and assays, and could be used to automate ELISA in the lab; or as a diagnostic test at the point of care with the convenience and form factor of rapid tests while preserving the protocol and performance of central laboratory ELISA.


COVID-19 , Humans , Collodion , COVID-19/diagnosis , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay/methods , Antibodies , Antibodies, Immobilized , Printing, Three-Dimensional , Lab-On-A-Chip Devices
8.
Gut Microbes ; 14(1): 2096993, 2022.
Article En | MEDLINE | ID: mdl-35844189

In vitro fermentation systems allow for the investigation of gut microbial communities with precise control of various physiological parameters while decoupling confounding factors from the human host. Current systems, such as the SHIME and Robogut, are large in footprint, lack multiplexing, and have low experimental throughput. Alternatives which address these shortcomings, such as the Mini Bioreactor Array system, are often reliant on expensive specialized equipment, which hinders wide replication across labs. Here, we present the Mini Colon Model (MiCoMo), a low-cost, benchtop multi-bioreactor system that simulates the human colon environment with physiologically relevant conditions. The device consists of triplicate bioreactors working independently of an anaerobic chamber and equipped with automated pH, temperature, and fluidic control. We conducted 14-d experiments and found that MiCoMo was able to support a stable complex microbiota community with a Shannon Index of 3.17 ± 0.65, from individual fecal samples after only 3-5 d of inoculation. MiCoMo also retained inter-sample microbial differences by developing closely related communities unique to each donor, while maintaining both minimal variations between replicate reactors (average Bray-Curtis similarity 0.72 ± 0.13) andday-to-day variations (average Bray-Curtis similarity 0.81±0.10) after this short stabilization period. Together, these results establish MiCoMo as an accessible system for studying gut microbial communities with high throughput and multiplexing capabilities.


Gastrointestinal Microbiome , Microbiota , Bioreactors , Colon , Feces , Humans , RNA, Ribosomal, 16S
9.
Nature ; 605(7910): 464-469, 2022 05.
Article En | MEDLINE | ID: mdl-35585345

Chain reactions, characterized by initiation, propagation and termination, are stochastic at microscopic scales and underlie vital chemical (for example, combustion engines), nuclear and biotechnological (for example, polymerase chain reaction) applications1-5. At macroscopic scales, chain reactions are deterministic and limited to applications for entertainment and art such as falling dominoes and Rube Goldberg machines. On the other hand, the microfluidic lab-on-a-chip (also called a micro-total analysis system)6,7 was visualized as an integrated chip, akin to microelectronic integrated circuits, yet in practice remains dependent on cumbersome peripherals, connections and a computer for automation8-11. Capillary microfluidics integrate energy supply and flow control onto a single chip by using capillary phenomena, but programmability remains rudimentary with at most a handful (eight) operations possible12-19. Here we introduce the microfluidic chain reaction (MCR) as the conditional, structurally programmed propagation of capillary flow events. Monolithic chips integrating a MCR are three-dimensionally printed, and powered by the free energy of a paper pump, autonomously execute liquid handling algorithms step-by-step. With MCR, we automated (1) the sequential release of 300 aliquots across chained, interconnected chips, (2) a protocol for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibodies detection in saliva and (3) a thrombin generation assay by continuous subsampling and analysis of coagulation-activated plasma with parallel operations including timers, iterative cycles of synchronous flow and stop-flow operations. MCRs are untethered from and unencumbered by peripherals, encode programs structurally in situ and can form a frugal, versatile, bona fide lab-on-a-chip with wide-ranging applications in liquid handling and point-of-care diagnostics.


COVID-19 , Microfluidic Analytical Techniques , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidics/methods , Polymerase Chain Reaction , SARS-CoV-2/genetics
10.
Child Neurol Open ; 9: 2329048X221083761, 2022.
Article En | MEDLINE | ID: mdl-35360486

We describe a unique clinical presentation of a child after the acute phase of herpes simplex virus 1 (HSV1) encephalitis. A 17-month-old boy first presented with HSV1 encephalitis and was promptly treated with antiviral medication. Seven months later, he was re-admitted for startle seizures. Magnetic Resonance Imaging of the brain showed diffuse confluent leukoencephalopathy. This constellation of symptoms has not been previously reported in HSV1 encephalitis. In conclusion, we showed that brain injury due to HSV1 encephalitis can be associated with the development of startle seizures and diffuse white matter injury in the post-acute phase.

11.
ACS Sens ; 6(5): 1796-1806, 2021 05 28.
Article En | MEDLINE | ID: mdl-33973474

Antibody microarrays enable multiplexed protein detection with minimal reagent consumption, but they continue to be plagued by lack of reproducibility. Chemically functionalized glass slides are used as substrates, yet antibody binding spatial inhomogeneity across the slide has not been analyzed in antibody microarrays. Here, we characterize spatial bias across five commercial slides patterned with nine overlapping dense arrays (by combining three buffers and three different antibodies), and we measure signal variation for both antibody immobilization and the assay signal, generating 270 heatmaps. Spatial bias varied across models, and the coefficient of variation ranged from 4.6 to 50%, which was unexpectedly large. Next, we evaluated three layouts of spot replicates-local, random, and structured random-for their capacity to predict assay variation. Local replicates are widely used but systematically underestimate the whole-slide variation by up to seven times; structured random replicates gave the most accurate estimation. Our results highlight the risk and consequences of using local replicates: the underappreciation of spatial bias as a source of variability, poor assay reproducibility, and possible overconfidence in assay results. We recommend the detailed characterization of spatial bias for antibody microarrays and the description and use of distributed positive replicates for research and clinical applications.


Antibodies , Protein Array Analysis , Microarray Analysis , Proteins , Reproducibility of Results
12.
Acta Neuropathol ; 141(5): 725-754, 2021 05.
Article En | MEDLINE | ID: mdl-33694021

The mechanisms by which parkin protects the adult human brain from Parkinson disease remain incompletely understood. We hypothesized that parkin cysteines participate in redox reactions and that these are reflected in its posttranslational modifications. We found that in post mortem human brain, including in the Substantia nigra, parkin is largely insoluble after age 40 years; this transition is linked to its oxidation, such as at residues Cys95 and Cys253. In mice, oxidative stress induces posttranslational modifications of parkin cysteines that lower its solubility in vivo. Similarly, oxidation of recombinant parkin by hydrogen peroxide (H2O2) promotes its insolubility and aggregate formation, and in exchange leads to the reduction of H2O2. This thiol-based redox activity is diminished by parkin point mutants, e.g., p.C431F and p.G328E. In prkn-null mice, H2O2 levels are increased under oxidative stress conditions, such as acutely by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin exposure or chronically due to a second, genetic hit; H2O2 levels are also significantly increased in parkin-deficient human brain. In dopamine toxicity studies, wild-type parkin, but not disease-linked mutants, protects human dopaminergic cells, in part through lowering H2O2. Parkin also neutralizes reactive, electrophilic dopamine metabolites via adduct formation, which occurs foremost at the primate-specific residue Cys95. Further, wild-type but not p.C95A-mutant parkin augments melanin formation in vitro. By probing sections of adult, human midbrain from control individuals with epitope-mapped, monoclonal antibodies, we found specific and robust parkin reactivity that co-localizes with neuromelanin pigment, frequently within LAMP-3/CD63+ lysosomes. We conclude that oxidative modifications of parkin cysteines are associated with protective outcomes, which include the reduction of H2O2, conjugation of reactive dopamine metabolites, sequestration of radicals within insoluble aggregates, and increased melanin formation. The loss of these complementary redox effects may augment oxidative stress during ageing in dopamine-producing cells of mutant PRKN allele carriers, thereby enhancing the risk of Parkinson's-linked neurodegeneration.


Aging/metabolism , Dopamine/metabolism , Mesencephalon/metabolism , Nerve Degeneration/metabolism , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , Animals , Child , Child, Preschool , Female , Humans , Male , Mesencephalon/pathology , Mice , Mice, Inbred C57BL , Middle Aged , Nerve Degeneration/pathology , Oxidation-Reduction , Young Adult
13.
PLoS One ; 16(2): e0246577, 2021.
Article En | MEDLINE | ID: mdl-33566804

We examined whether activating independent or interdependent self-construal modulates attention shifting in response to group gaze cues. European Canadians (Study 1) and East Asian Canadians (Study 2) primed with independence vs. interdependence completed a multi-gaze cueing task with a central face gazing left or right, flanked by multiple background faces that either matched or mismatched the direction of the foreground gaze. Results showed that European Canadians (Study 1) mostly ignored background gaze cues and were uninfluenced by the self-construal primes. However, East Asian Canadians (Study 2), who have cultural backgrounds relevant to both independence and interdependence, showed different attention patterns by prime: those primed with interdependence were more distracted by mismatched (vs. matched) background gaze cues, whereas there was no change for those primed with independence. These findings suggest activating an interdependent self-construal modulates social attention mechanisms to attend broadly, but only for those who may find these representations meaningful.


Attention/physiology , Canada , Culture , Asia, Eastern , Humans , Self Concept
14.
Am J Med Genet A ; 185(1): 15-25, 2021 01.
Article En | MEDLINE | ID: mdl-33029936

Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5' end and 3' extension of precursor-U8. There was no obvious genotype-phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3' end processing of precursor-U8.


Calcinosis/genetics , Genetic Association Studies , Leukoencephalopathies/genetics , RNA, Small Nucleolar/genetics , Adolescent , Adult , Aged , Animals , Calcinosis/complications , Calcinosis/pathology , Child , Child, Preschool , Consanguinity , Disease Models, Animal , Female , Heterozygote , Humans , Infant , Infant, Newborn , Leukoencephalopathies/complications , Leukoencephalopathies/pathology , Male , Middle Aged , Pathology, Molecular , Young Adult , Zebrafish/genetics
15.
Am J Hum Genet ; 107(2): 364-373, 2020 08 06.
Article En | MEDLINE | ID: mdl-32707086

We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.


Brain Diseases/genetics , Mitochondrial Proteins/genetics , Neurodegenerative Diseases/genetics , Spastic Paraplegia, Hereditary/genetics , Adolescent , Adult , Alleles , Amino Acid Sequence , Child , Female , Humans , Male , Mitochondria/genetics , Pedigree , Phenotype , Young Adult
16.
PLoS One ; 15(5): e0233758, 2020.
Article En | MEDLINE | ID: mdl-32470074

There is mounting evidence that North Americans are better able to remember faces of targets who belong to the same social group, and this is true even when the social groups are experimentally created. Yet, how Western cultural contexts afford the development of this own group face recognition bias remains unknown. This question is particularly important given that recent findings suggest that first-generation East Asian Canadians do not show this bias. In the current research, we examined the own-group bias among first- and second-generation East Asian Canadians, who vary systematically in their exposure to and engagement in a Western cultural context, and tested mediators that could explain any difference. In Study 1, second-generation East Asian Canadians showed better memory for same-group (vs. other-group) faces. In Studies 2 and 3, as well as a meta-analysis of all three studies, we found some additional evidence that second-generation East Asian Canadians show better memory for same-group (vs. other-group) faces, whereas first-generation East Asian Canadians do not, but only when each cultural group was examined separately in each study, as no interaction with generational status emerged. In Study 2, and in a higher powered pre-registered Study 3, we also examined whether second- (vs. first-) generational status had a positive indirect effect on same-group face recognition through the effects of acculturation and perceived relational mobility in the immediate social environment, however this mediation model was not supported by the data. Overall, the results provide some additional evidence that the effect of mere social categorization on face recognition may not be as consistently found among East Asian participants.


Facial Recognition , Adolescent , Adult , Asian People , Bias , Canada , Female , Humans , Male , Recognition, Psychology , Young Adult
17.
Chem Soc Rev ; 48(5): 1390-1419, 2019 Mar 04.
Article En | MEDLINE | ID: mdl-30707214

Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.


Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , SELEX Aptamer Technique/methods , Animals , Base Sequence , Humans , Nanoparticles/chemistry , Nucleic Acid Conformation
18.
Nat Nanotechnol ; 13(10): 925-932, 2018 10.
Article En | MEDLINE | ID: mdl-30061659

Quantitative models of Förster resonance energy transfer (FRET)-pioneered by Förster-define our understanding of FRET and underpin its widespread use. However, multicolour FRET (mFRET), which arises between multiple, stochastically distributed fluorophores, lacks a mechanistic model and remains intractable. mFRET notably arises in fluorescently barcoded microparticles, resulting in a complex, non-orthogonal fluorescence response that impedes their encoding and decoding. Here, we introduce an ensemble mFRET (emFRET) model, and apply it to guide barcoding into regimes with extreme FRET. We further introduce a facile, proportional multicolour labelling method using oligonucleotides as homogeneous linkers. A total of 580 barcodes were rapidly designed and validated using four dyes-with FRET efficiencies reaching 76%-and used for multiplexed immunoassays with cytometric readout and fully automated decoding. The emFRET model helps to expand the barcoding capacity of barcoded microparticles using common organic dyes and will benefit other applications subject to stochastic mFRET.

19.
Epilepsy Behav Case Rep ; 10: 29-31, 2018.
Article En | MEDLINE | ID: mdl-29977791

Herein, we describe a case report of anti-NMDA receptor encephalitis characterized by a single generalized tonic-clonic seizure and predominantly psychiatric symptoms, persisting long after EEG abnormalities had resolved. We discuss common presentations of anti-NMDA receptor encephalitis and advocate for the inclusion of this disease entity in the differential diagnosis of patients presenting with one generalized tonic-clonic seizure and prominent psychiatric symptoms.

20.
Nat Commun ; 9(1): 343, 2018 01 24.
Article En | MEDLINE | ID: mdl-29367662

Duplexed aptamers (DAs) are ligand-responsive constructs engineered by hybridizing an aptamer with an aptamer-complementary element (ACE, e.g., a DNA oligonucleotide). Although DAs are commonly deployed, the binding dynamics of ternary ACE-aptamer-ligand systems remain underexplored, having been conventionally described by a conformational selection framework. Here we introduce aptamer-complementary element scanning (ACE-Scan) as a method to generate comprehensive hybridization, spontaneous off-rate, and induced fit ligand-binding landscapes for entire DA families. ACE-Scan reveals induced fit in DAs engineered from small molecule- and protein-binding DNA and RNA aptamers, as well as DAs engineered from the natural add riboswitch aptamer. To validate ACE-Scan, we engineer solution-phase ATP-specific DAs from 5 ACEs with varying spontaneous and induced fit off-rates, generating aptasensors with 8-fold differences in dynamic range consistent with ACE-Scan. This work demonstrates that ACE-Scan can readily map induced fit in DAs, empowering aptamers in biosensing, synthetic biology, and DNA nanomachines.


Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Oligonucleotide Array Sequence Analysis/methods , Adenosine Triphosphate/metabolism , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Humans , Ligands , Reproducibility of Results , Riboswitch , Thrombin/metabolism , Vibrio vulnificus/genetics , Workflow
...