Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 13237, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796309

RESUMEN

Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

2.
ChemSusChem ; 8(20): 3512-9, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26377877

RESUMEN

The development of low-cost hydrogen evolution reaction (HER) catalysts that can be readily integrated into electrolyzers is critical if H2 from renewable electricity-powered electrolysis is to compete cost effectively with steam reforming. Herein, we report three distinct earth-abundant Mo-based catalysts, namely those based on MoSx , [Mo3 S13 ](2-) nanoclusters, and sulfur-doped Mo phosphide (MoP|S), loaded onto carbon supports. The catalysts were synthesized through facile impregnation-sulfidization routes specifically designed for catalyst-device compatibility. Fundamental electrochemical studies demonstrate the excellent HER activity and stability of the Mo-sulfide based catalysts in an acidic environment, and the resulting polymer electrolyte membrane (PEM) electrolyzers that integrate these catalysts exhibit high efficiency and durability. This work is an important step towards the goal of replacing Pt with earth-abundant catalysts for the HER in commercial PEM electrolyzers.


Asunto(s)
Disulfuros/química , Polímeros de Fluorocarbono/química , Hidrógeno/química , Molibdeno/química , Carbono/química , Catálisis , Electroquímica , Electrólisis , Electrólitos , Nanoestructuras/química , Platino (Metal)/química
3.
Phys Chem Chem Phys ; 17(14): 8901-12, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25747045

RESUMEN

Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kß X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kß signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.


Asunto(s)
Electroquímica , Electrones , Metales/química , Oxígeno/química , Espectrometría por Rayos X/métodos , Catálisis , Oxidación-Reducción , Agua/química
4.
Phys Chem Chem Phys ; 16(36): 19250-7, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-25098811

RESUMEN

The development of improved catalysts for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) in basic electrolytes remains a major technical obstacle to improved fuel cells, water electrolyzers, and other devices for electrochemical energy storage and conversion. Based on the free energy of adsorbed hydrogen intermediates, theory predicts that alloys of nickel and silver are active for these reactions. In this work, we synthesize binary nickel-silver bulk alloys across a range of compositions and show that nickel-silver alloys are indeed more active than pure nickel for hydrogen evolution and, possibly, hydrogen oxidation. To overcome the mutual insolubility of silver and nickel, we employ electron-beam physical vapor codeposition, a low-temperature synthetic route to metastable alloys. This method also produces flat and uniform films that facilitate the measurement of intrinsic catalytic activity with minimal variations in the surface area, ohmic contact, and pore transport. Rotating-disk-electrode measurements demonstrate that the hydrogen evolution activity per geometric area of the most active catalyst in this study, Ni0.75Ag0.25, is approximately twice that of pure nickel and has comparable stability and hydrogen oxidation activity. Our experimental results are supported by density functional theory calculations, which show that bulk alloying of Ni and Ag creates a variety of adsorption sites, some of which have near-optimal hydrogen binding energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...