Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 82
1.
J Med Microbiol ; 73(2)2024 Feb.
Article En | MEDLINE | ID: mdl-38380521

Introduction. Non-tuberculous Mycobacteria (NTM) is a group of mycobacteria distinct from the Mycobacterium tuberculosis complex. They can cause opportunistic infections, especially in immunocompromised individuals.Gap Statement. Over the last few years, there has been a growing concern regarding the distribution and antimicrobial resistance of NTM in Malaysia. however, a comprehensive study to fully grasp the NTM situation has yet to be conducted.Aim. This study aimed to investigate the species distribution and antimicrobial susceptibility patterns of NTM isolated from clinical samples in Malaysia from 2018 to 2022.Methodology. A retrospective analysis was conducted on NTM isolates obtained from various clinical specimens over a span of five years. The isolates were identified using phenotypic and molecular techniques, and antimicrobial susceptibility profiles for clinically significant isolates were determined using minimum inhibitory concentration.Results. The study revealed a diverse distribution of NTM species in Malaysia, with Mycobacteroides abscessus complex and Mycobacterium avium complex emerging as the most predominant. Furthermore, the antimicrobial susceptibility patterns showed varying degrees of resistance to commonly used antibiotics, highlighting the significance of treatment tailored to susceptibility testing results.Conclusion. This study provides valuable perspective into the epidemiology of NTM in Malaysia. The information gained from this study should prove useful for empirically treating serious NTM infections prior to species identification and the availability of antimicrobial susceptibility testing results.


Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Humans , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Retrospective Studies , Malaysia/epidemiology , Anti-Bacterial Agents/pharmacology
2.
Pharmaceuticals (Basel) ; 16(6)2023 May 24.
Article En | MEDLINE | ID: mdl-37375732

Mycobacteria form some of the most notorious and difficult-to-treat bacterial pathogens. As a group, they are intrinsically resistant to many commonly used antibiotics, such as tetracyclines and beta-lactams. In addition to intrinsic resistances, acquired multidrug resistance has also been observed and documented in Mycobacterium tuberculosis (MTB), Mycobacterium leprae and non-tuberculous mycobacteria (NTM). To combat multidrug resistant infections by these pathogens, innovative antimicrobials and treatment regimens are required. In this regard, linezolid, an oxazolidinone introduced for clinical use just two decades ago, was added to the therapeutic armamentarium for drug-resistant mycobacteria. It exhibits antibacterial activity by binding to the 50S ribosomal subunit and inhibiting protein synthesis. Unfortunately, linezolid resistance has now been documented in MTB and NTM, in many parts of the world. Most linezolid-resistant mycobacterial strains show mutations in the ribosome or related genes, such as in the rplC, rrl and tsnR genes. Non-ribosomal mechanisms appear to be rare. One such mechanism was associated with a mutation in fadD32, which encodes a protein that plays an important role in mycolic acid synthesis. Mycobacterial efflux proteins have also been implicated in linezolid resistance. This review summarises current knowledge of genetic determinants of linezolid resistance in mycobacteria, with the aim of contributing information that could facilitate the discovery of new therapeutic approaches to overcome, delay or avoid further developments of drug resistance among these important pathogens.

3.
Microb Drug Resist ; 29(2): 41-46, 2023 Feb.
Article En | MEDLINE | ID: mdl-36802272

Linezolid is one of the antibiotics used to treat the Mycobacteroides abscessus infection. However, linezolid-resistance mechanisms of this organism are not well understood. The objective of this study was to identify possible linezolid-resistance determinants in M. abscessus through characterization of step-wise mutants selected from a linezolid-susceptible strain, M61 (minimum inhibitory concentration [MIC]: 0.25 mg/L). Whole-genome sequencing and subsequent PCR verification of the resistant second-step mutant, A2a(1) (MIC: >256 mg/L), revealed three mutations in its genome, two of which were found in the 23S rDNA (g2244t and g2788t) and another one was found in a gene encoding the fatty-acid-CoA ligase FadD32 (c880t→H294Y). The 23S rRNA is the molecular target of linezolid and mutations in this gene are likely to contribute to resistance. Furthermore, PCR analysis revealed that the c880t mutation in the fadD32 gene first appeared in the first-step mutant, A2 (MIC: 1 mg/L). Complementation of the wild-type M61 with the pMV261 plasmid carrying the mutant fadD32 gene caused the previously sensitive M61 to develop a reduced susceptibility to linezolid (MIC: 1 mg/L). The findings of this study uncovered hitherto undescribed mechanisms of linezolid resistance in M. abscessus that may be useful for the development of novel anti-infective agents against this multidrug-resistant pathogen.


Anti-Bacterial Agents , Mycobacterium abscessus , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Linezolid/pharmacology , Microbial Sensitivity Tests , Mutation/genetics , Mycobacterium abscessus/genetics , RNA, Ribosomal, 23S/genetics , Bacterial Proteins/genetics
4.
Expert Rev Mol Med ; 25: e11, 2022 11 16.
Article En | MEDLINE | ID: mdl-36380484

Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.


Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , DNA Methylation , Liver Neoplasms/etiology , Liver Neoplasms/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B/genetics , DNA, Circular/genetics
5.
BMC Genomics ; 23(1): 715, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36261788

BACKGROUND: Mycobacteroides abscessus complex (MABC), an emerging pathogen, causes human infections resistant to multiple antibiotics. In this study, the genome data of 1,581 MABC strains were downloaded from NCBI database for phylogenetic relatedness inference, resistance profile identification and the estimation of evolutionary pressure on resistance genes in silico. RESULTS: From genes associated with resistance to 28 antibiotic classes, 395 putative proteins (ARPs) were identified, based on the information in two antibiotic resistance databases (CARD and ARG-ANNOT). The ARPs most frequently identified in MABC were those associated with resistance to multiple antibiotic classes, beta-lactams and aminoglycosides. After excluding ARPs that had undergone recombination, two ARPs were predicted to be under diversifying selection and 202 under purifying selection. This wide occurrence of purifying selection suggested that the diversity of commonly shared ARPs in MABC have been reduced to achieve stability. The unequal distribution of ARPs in members of the MABC could be due to horizontal gene transfer or ARPs pseudogenization events. Most (81.5%) of the ARPs were observed in the accessory genome and 72.2% ARPs were highly homologous to proteins associated with mobile genetic elements such as plasmids, prophages and viruses. On the other hand, with TBLASTN search, only 18 of the ARPs were identified as pseudogenes. CONCLUSION: Altogether, our results suggested an important role of horizontal gene transfer in shaping the resistome of MABC.


Mycobacterium abscessus , Humans , Mycobacterium abscessus/genetics , Gene Transfer, Horizontal , Phylogeny , beta-Lactams , Anti-Bacterial Agents , Aminoglycosides
6.
J Med Microbiol ; 71(6)2022 Jun.
Article En | MEDLINE | ID: mdl-35700112

Tigecycline is an important rescue antibiotic for many bacterial infections. In Mycobacteroides abscessus, tigecycline resistance has been associated with dysregulated stress response caused by aberrations in the interaction of the SigH and RshA factors. In this study, two tigecycline-resistant mutants of M. abscessus (CL5A and CL6A) with mutations in the rshA gene were studied using gene complementation, RT-qPCR and the bacterial adenylate cyclase two-hybrid (BACTH) system. The results supported the premise that mutations in the rshA interrupt the RshA-SigH interaction to cause the overexpression of the sigH gene that leads to tigecycline resistance or reduced susceptibility.


Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium abscessus/genetics , Sigma Factor/genetics , Tigecycline/pharmacology
7.
Antibiotics (Basel) ; 11(5)2022 Apr 25.
Article En | MEDLINE | ID: mdl-35625216

Mycobacteroides abscessus (formerly Mycobacterium abscessus) is a clinically important, rapid-growing non-tuberculous mycobacterium notoriously known for its multidrug-resistance phenotype. The intrinsic resistance of M. abscessus towards first- and second-generation tetracyclines is mainly due to the over-expression of a tetracycline-degrading enzyme known as MabTetX (MAB_1496c). Tigecycline, a third-generation tetracycline, is a poor substrate for the MabTetX and does not induce the expression of this enzyme. Although tigecycline-resistant strains of M. abscessus have been documented in different parts of the world, their resistance determinants remain largely elusive. Recent work on tigecycline resistance or reduced susceptibility in M. abscessus revealed the involvement of the gene MAB_3508c which encodes the transcriptional activator WhiB7, as well as mutations in the sigH-rshA genes which control heat shock and oxidative-stress responses. The deletion of whiB7 has been observed to cause a 4-fold decrease in the minimum inhibitory concentration of tigecycline. In the absence of environmental stress, the SigH sigma factor (MAB_3543c) interacts with and is inhibited by the anti-sigma factor RshA (MAB_3542c). The disruption of the SigH-RshA interaction resulting from mutations and the subsequent up-regulation of SigH have been hypothesized to lead to tigecycline resistance in M. abscessus. In this review, the evidence for different genetic determinants reported to be linked to tigecycline resistance in M. abscessus was examined and discussed.

8.
Tuberculosis (Edinb) ; 133: 102183, 2022 03.
Article En | MEDLINE | ID: mdl-35180496

A simple, ready-to-use concentrated specimen smear microscopy method employing a nanometer silicon polyvinylidene fluoride (PVDF) polymer membrane sandwich filtration vessel to concentrate acid-fast bacilli (AFB) in samples (SFV-CSSM, Hunan-Tech New Medical System Co. Ltd. China) was compared with direct sputum smear microscopy (DSSM) to determine its performance using culture on modified Ogawa agar as reference. The results for 4114 clinical samples collected from health facilities in Sabah were interpreted with reference to culture results, sample collection-transportation conditions and clinical data including responses to anti-TB drug treatment. The SFV-CSSM showed higher sensitivity than DSSM (79.4% versus 60.5%) and less background interference. Its ability to detect low levels of AFB at an affordable cost makes it an excellent tool for the screening of pauci-bacillary samples as well as for active case finding in TB control programs.


Microscopy , Mycobacterium tuberculosis , Tuberculosis , Health Facilities , Malaysia , Microscopy/methods , Polymers , Sensitivity and Specificity , Sputum , Tuberculosis/diagnosis
9.
Biochem Mol Biol Educ ; 50(1): 99-103, 2022 01.
Article En | MEDLINE | ID: mdl-34854201

Relative quantification is a popular analysis in gene expression studies using quantitative real-time PCR (qPCR). However, the calculation steps using the major algorithms for this analysis are rather complicated. In this study, we developed an easy-to-use spreadsheet-based method for relative quantification. The inputs from end-users are the efficiencies of both target and reference genes and the Cq values of those genes from cases and controls. This method performed normalization (with one or more reference genes), calculation of fold change of gene expression, and statistical analysis to analyze the difference between the groups in a step-by-step manner, which would allow the end-users to understand how the analysis arrived at the conclusion. Four previously published data sets with different experimental designs were used as examples. The calculated results were concordant with the results computed by the Relative Expression Software Tool (REST) 2009, a popular tool for relative quantification. Altogether, our method, which offers easy-to-understand calculation steps and does not require specialized instruments, software, or expertise to operate, would be a useful tool for students, educators, and scientists in the field of molecular biology.


Research Design , Software , Algorithms , Gene Expression Profiling/methods , Humans , Real-Time Polymerase Chain Reaction/methods
10.
J Med Microbiol ; 71(12)2022 Dec.
Article En | MEDLINE | ID: mdl-36748567

Introduction Listeriosis, a foodborne infection caused by Listeria monocytogenes, could lead to febrile listerial gastroenteritis and a more invasive form which is often associated with a high mortality and hospitalisation rate. Gentamicin, used as an adjunct therapy with ampicillin, remains the treatment of choice for this life-threatening and invasive infection.Gap statement Nevertheless, there is little data on gentamicin resistance determinants in L. monocytogenes.Aim In this study, we selected and characterised B2b, a gentamicin-resistant mutant derived from L. monocytogenes ATCC 19115 to determine the target(s) of resistance in L. monocytogenes after exposure to gentamicin.Methodology Whole-genome sequencing was carried out to identify the mutation site(s) and possible mechanism(s) of resistance. The mutant was characterised using antimicrobial susceptibility testing and PCR. For biological verifications, complementation and allelic exchange mutagenesis were carried out.Results We found that the gentamicin resistance in B2b was caused by a 10 bp deletion in atpG2 which encodes a gamma subunit of the ATP synthase in L. monocytogenes. Using atpG2 PCR, various other mutations were identified in other gentamicin resistant mutants derived from ATCC 19115. In addition, the mutation from B2b, when introduced into L. ivanovii, also caused gentamicin resistance in this Listeria species.Conclusion Hence, atpG2 mutations appear to be important determinants of gentamicin resistance not only in L. monocytogenes but possibly also in other Listeria species.


Drug Resistance, Bacterial , Listeria monocytogenes , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Mutation , Drug Resistance, Bacterial/genetics
11.
PeerJ ; 9: e12449, 2021.
Article En | MEDLINE | ID: mdl-34760404

BACKGROUND: More than a year after its first appearance in December 2019, the COVID-19 pandemic is still on a rampage in many parts of the world. Although several vaccines have been approved for emergency use, the emergence and rapid spread of new SARS-CoV-2 variants have sparked fears of vaccine failure due to immune evasion. Massive viral genome sequencing has been recommended to track the genetic changes that could lead to adverse consequences. METHODS: We sequenced SARS-CoV-2 respiratory isolates from the National Public Health Laboratory, Malaysia and examined them together with viral genomes deposited in GISAID by other Malaysian researchers, to understand the evolutionary trend of the virus circulating in the country. We studied the distribution of virus lineages and site-wise mutations, analysed genetic clustering with the goeBURST full Minimum Spanning Tree algorithm, examined the trend of viral nucleotide diversity over time and performed nucleotide substitution association analyses. RESULTS: We identified 22 sub-lineages, 13 clonal complexes, 178 sequence types and seven sites of linkage disequilibrium in 277 SARS-CoV-2 genomes sequenced between January and December 2020. B.1.524 was the largest lineage group. The number of mutations per genome ranged from 0 to 19. The mean genomic diversity value over 12 months was 3.26 × 10-4. Of 359 mutations detected, 60.5% of which were non-synonymous, the most frequent were in the ORF1ab (P4715L), S (D614G and A701V) and N (S194L) genes. CONCLUSION: The SARS-CoV-2 virus accumulated an abundance of mutations in the first year of the COVID-19 pandemic in Malaysia. Its overall genetic diversity, however, is relatively low compared to other Asian countries with larger populations. Continuous genomic and epidemiological surveillance will help to clarify the evolutionary processes determining viral diversity and impacting on human health.

12.
J Med Microbiol ; 70(7)2021 Jul.
Article En | MEDLINE | ID: mdl-34236301

Introduction. Tigecycline is currently acknowledged to be one of the most effective antibiotics against infections caused by Mycobacteroides abscessus.Gap statement. The genetic determinants of tigecycline resistance in M. abscessus are not well understood.Aim. In this study, we characterized a tigecycline-resistant M. abscessus mutant, designated CL7, to identify the potential resistance mechanism.Methodology. CL7 was characterized using antimicrobial susceptibility testing, whole-genome sequencing, PCR and RT-qPCR. For biological verification, gene overexpression assays were carried out.Results. Whole-genome sequencing and the subsequent gene overexpression assays showed that CL7 harboured a stop-gain mutation in MAB_3543 c, which may be responsible for the tigecycline resistance phenotype. This gene encodes an orthologue of SigH, which is involved in the positive regulation of physiological stress response and is negatively regulated by the RshA anti-sigma factor in Mycobacterium tuberculosis. We hypothesized that the MAB_3543 c mutation may disrupt the interaction between SigH and RshA (MAB_3542 c). RT-qPCR analyses revealed the upregulation of MAB_3543 c and other key stress response genes, which has previously been shown to be a hallmark of SigH-RshA bond disruption and tigecycline resistance.Conclusion. The MAB_3543c mutation may represent a novel determinant of tigecycline resistance in M. abscessus. The findings of this study will hopefully contribute to our knowledge of potential tigecycline resistance mechanisms in M. abscessus, which may lead to better diagnostics and treatment modalities in the future.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Sigma Factor/genetics , Tigecycline/pharmacology , Genome, Bacterial , Mutation , Whole Genome Sequencing
13.
Article En | MEDLINE | ID: mdl-33808066

COVID-19 is a global health emergency. People living with human immunodeficiency virus (PLHIV) have concerns about whether they have a higher risk of getting the infection and suffer worse COVID-19 outcomes. Findings from studies on these questions have largely been inconsistent. We aimed to determine the epidemiological characteristics, clinical signs and symptoms, blood parameters, and clinical outcomes among PLHIV who contracted COVID-19. Relevant studies were identified through Medline, Cinahl, and PubMed databases. A random-effects model was used in meta-analyses with a 95% confidence interval. Eighty-two studies were included in the systematic review and sixty-seven studies for the meta-analysis. The pooled incidence proportion of COVID-19 among PLHIV was 0.9% (95% CI 0.6%, 1.1%) based on the data from seven cohort studies. Overall, 28.4% were hospitalised, of whom, 2.5% was severe-critical cases and 3.5% needed intensive care. The overall mortality rate was 5.3%. Hypertension was the most commonly reported comorbidity (24.0%). Fever (71.1%) was the most common symptom. Chest imaging demonstrated a wide range of abnormal findings encompassing common changes such as ground glass opacities and consolidation as well as a spectrum of less common abnormalities. Laboratory testing of inflammation markers showed that C-reactive protein, ferritin, and interleukin-6 were frequently elevated, albeit to different extents. Clinical features as well as the results of chest imaging and laboratory testing were similar in highly active antiretroviral therapy (HAART)-treated and non-treated patients. PLHIV were not found to be at higher risk for adverse outcomes of COVID-19. Hence, in COVID-19 management, it appears that they can be treated the same way as HIV negative individuals. Nevertheless, as the pandemic situation is rapidly evolving, more evidence may be needed to arrive at definitive recommendations.


COVID-19 , HIV Infections , Fever , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Pandemics , SARS-CoV-2
14.
Front Cell Infect Microbiol ; 10: 603086, 2020.
Article En | MEDLINE | ID: mdl-33364203

Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.


Colorectal Neoplasms , Gastrointestinal Microbiome , Animals , Carcinogenesis , Colorectal Neoplasms/etiology , Diet , Humans
15.
Pathog Dis ; 78(8)2020 11 11.
Article En | MEDLINE | ID: mdl-32945880

The subspecies classification of Mycobacteroides abscessus complex into M. abscessus, M. massiliense and M. bolletii requires the amplification and sequencing of multiple genes. The objective of this study was to evaluate the possibility of subspecies classification using a single PCR target. An in silico study was performed to classify 1613 strains deposited in a public database using 9 genes (partial gene sequences of hsp65, rpoB, sodA, argH, cya, glpK, gnd, and murC, and the full gene sequence of MAB_3542c). We found the housekeeping gene gnd to be able to classify the M. abscessus subspecies with high accuracy (99.94%). A single-gene PCR approach based on gnd would be a suitable replacement for the more expensive, labor-intensive and time-consuming multi-gene PCR analysis currently in use for the subspecies identification of M. abscessus.


Bacterial Typing Techniques/methods , Mycobacterium abscessus/classification , Mycobacterium abscessus/genetics , Phosphogluconate Dehydrogenase/genetics , Bacterial Proteins/genetics , DNA, Bacterial , Genes, Essential , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
16.
Sci Data ; 7(1): 135, 2020 05 05.
Article En | MEDLINE | ID: mdl-32371951

Mycobacterium tuberculosis (MTB) is commonly used as a model to study pathogenicity and multiple drug resistance in bacteria. These MTB characteristics are highly dependent on the evolution and phylogeography of the bacterium. In this paper, we describe 15 new genomes of multidrug-resistant MTB (MDRTB) from Malaysia. The assessments and annotations on the genome assemblies suggest that strain differences are due to lineages and horizontal gene transfer during the course of evolution. The genomes show mutations listed in current drug resistance databases and global MTB collections. This genome data will augment existing information available for comparative genomic studies to understand MTB drug resistance mechanisms and evolution.


Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Gene Transfer, Horizontal , Humans , Malaysia , Molecular Sequence Annotation , Mutation
17.
Int J Med Microbiol ; 310(1): 151380, 2020 Jan.
Article En | MEDLINE | ID: mdl-31784213

Previously, we characterized 7C, a laboratory-derived tigecycline-resistant mutant of Mycobacterium abscessus ATCC 19977, and found that the resistance was conferred by a mutation in MAB_3542c, which encodes an RshA-like protein. In M. tuberculosis, RshA is an anti-sigma factor that negatively regulates the SigH-dependent heat/oxidative stress response. We hypothesized that this mutation in 7C might dysregulate the stress response which has been generally linked to antibiotic resistance. In this study, we tested this hypothesis by subjecting 7C to transcriptomic dissection using RNA sequencing. We found an over-expression of genes encoding the SigH ortholog, chaperones and oxidoreductases. In line with these findings, 7C demonstrated better survival against heat shock when compared to the wild-type ATCC 19977. Another interesting observation from the RNA-Seq analysis was the down-regulation of ribosomal protein-encoding genes. This highlights the possibility of ribosomal conformation changes which could negatively affect the binding of tigecycline to its target, leading to phenotypic resistance. We also demonstrated that transient resistance to tigecycline could be induced in the ATCC 19977 by elevated temperature. Taken together, these findings suggest that dysregulated stress response may be associated with tigecycline resistance in M. abscessus.


Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mycobacterium abscessus/drug effects , Stress, Physiological , Tigecycline/pharmacology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Mycobacterium abscessus/genetics , Ribosomal Proteins/genetics , Sigma Factor/genetics , Sigma Factor/metabolism , Temperature , Transcription, Genetic
18.
Viruses ; 11(9)2019 09 01.
Article En | MEDLINE | ID: mdl-31480588

Coffee is hepatoprotective and potentially antiviral; however, its anti-hepatitis B virus (anti-HBV) property is not known in humans. This study investigated the influence of coffee drinking behaviour as well as clinical and biochemical profiles of hepatitis B e antigen (HBeAg) negative participants on circulating HBV DNA and hepatitis B surface antigen (HBsAg) levels at a 24-week interval. Exactly 114 chronically HBV-infected adult participants were enrolled from the University of Malaya Medical Centre (UMMC), Malaysia. A significant reduction of HBV DNA level was observed in those drinking three or more cups of coffee per day, with a median reduction of 523 IU/mL (P = 0.003). Reduction of HBsAg level was observed in those drinking two cups per day, with a median reduction of 37 IU/mL (P < 0.001). Multivariate analysis showed that increased coffee intake (P = 0.015) and lower ALT level (P = 0.033) were the significant predictors for a lower HBV DNA level, whereas increased coffee intake (P = 0.002) and having a family history of HBV infection (P = 0.021) were the significant predictors for a lower HBsAg level. These data suggest that drinking three cups or more coffee per day reduces circulating HBV DNA and HBsAg levels.


Coffee , DNA, Viral/blood , Drinking Behavior , Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/virology , Aged , Alanine Transaminase/blood , Cohort Studies , Female , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/epidemiology , Humans , Malaysia/epidemiology , Male , Middle Aged , Viral Load
19.
J Med Microbiol ; 67(12): 1676-1681, 2018 Dec.
Article En | MEDLINE | ID: mdl-30351265

In this study, we characterized 7C, a spontaneous mutant selected from tigecycline-susceptible Mycobacterium abscessus ATCC 19977. Whole-genome sequencing (WGS) was used to identify possible resistance determinants in this mutant. Compared to the wild-type, 7C demonstrated resistance to tigecycline as well as cross-resistance to imipenem, and had a slightly retarded growth rate. WGS and subsequent biological verifications showed that these phenotypes were caused by a point mutation in MAB_3542c, which encodes an RshA-like protein. In Mycobacterium tuberculosis, RshA is an anti-sigma factor that negatively regulates the heat/oxidative stress response mechanisms. The MAB_3542c mutation may represent a novel determinant of tigecycline resistance. We hypothesize that this mutation may dysregulate the stress-response pathways which have been shown to be linked to antibiotic resistance in previous studies.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/genetics , Tigecycline/pharmacology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Microbial Sensitivity Tests , Mutation
20.
J Vet Med Sci ; 80(4): 653-661, 2018 Apr 18.
Article En | MEDLINE | ID: mdl-29311425

Bartonella bovis is a small Gram-negative bacterium recognized as an etiological agent for bacteremia and endocarditis in cattle. As few reports are available on the taxonomic position of B. bovis and its mechanism of virulence, this study aims to resolve the phylogeny of B. bovis and investigate putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in this study for phylogenetic inference of 27 Bartonella species. Rapid Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative virulence genes. The phylogenetic tree generated from the genome-wide comparison of orthologous genes exhibited a topology almost similar to that of the tree generated from SNP-based comparison, indicating a high concordance in the nucleotide and amino acid sequences of Bartonella spp. The analyses show consistent grouping of B. bovis in a cluster related to ruminant-associated species, including Bartonella australis, Bartonella melophagi and Bartonella schoenbuchensis. RAST analysis revealed genes encoding flagellar components, in corroboration with the observation of flagella-like structure of BbUM strain under negative straining. Genes associated with virulence, disease and defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are annotated in B. bovis genome. The flagellin (flaA) gene of B. bovis is closely related to Bartonella bacilliformis and Bartonella clarridgeiae but distinct from other Gram-negative bacteria. The absence of type IV secretion systems, the bona fide pathogenicity factors of bartonellae, in B. bovis suggests that it may have a different mechanism of pathogenicity.


Bartonella/genetics , Bartonella/pathogenicity , Phylogeny , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Sequence Analysis, DNA , Virulence
...