Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Anim Biosci ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38938037

RESUMEN

Objective: The remarkable adaptability to the environment, high growth rate, meat with good taste and aroma, and ornamental appearance of the Pradu Hang Dam (PDH) and Samae Dam (SD) chickens make them valuable for improvement of poultry production to enhance food security. However, despite their close phenotypic similarity, distinct classification of PDH and SD chickens remains controversial. Thus, this study aimed to clarify genetic origins and variation between PDH and SD chickens, genetic diversity and structures of PDH and SD chickens. Methods: This study analyzed 5 populations of PDH and 2 populations of SD chickens using 28 microsatellite markers and compared with those of other indigenous and local chicken breeds using Thailand's "The Siam Chicken Bioresource Project" database. Results: Considerably high genetic variability was observed within PDH (370 total alleles; 4.086 ± 0.312 alleles/locus) and SD chickens (179 total alleles; 3.607 ± 0.349 alleles/locus). A partial overlap of gene pools was observed between SD chickens from the Department of Livestock, Uthai Thani (SD1) and PDH chickens, suggesting a potentially close relationship between the two chicken breeds. A gene pool that is partially overlapped with that of the red junglefowl was observed in the SD chicken population from the Sanhawat Farm Uthai Thani population (SD2). Distinct subclusters were observed within SD chickens, indicating the possibility that genetic differentiation occurred early in the process of establishment of SD chickens. Conclusion: These findings could offer valuable insights into genetic verification of Thai local chicken breeds and their sustainable conservation and utilization.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38321897

RESUMEN

AIM: Anticancer treatment is required to provide effective and safe patient medicines. This research aided in developing and applying nanoparticles (NPs) for cancer treatment. BACKGROUND: The poor solubility of paclitaxel (PTX) restricts its therapeutic efficacy because of allergic side effects caused by formulation excipients. To overcome this, PTX was coupled with artemisinin derivatives and loaded into an NP drug delivery system to enhance its effects while addressing its low solubility. OBJECTIVES: This study prepared and characterized a hybrid PLGA-lecithin NP containing dihydroartemisinin (DHA) and PTX for synergic anticancer therapy. A lyophilization study improved the stability of the NP drug formulations. METHODS: Dual PTX- and DHA-loaded PLGA- and lecithin-based NPs were prepared using a single-step solvent evaporation method. The NP suspensions were lyophilized, and the types and ratios of cryoprotectants were investigated. The physicochemical properties of NPs and lyophilized cakes (Lyo-NPs) were characterized. The stability of the Lyo-NPs was investigated at 2-8°C and room conditions. The anticancer effects of the drug combination, NP suspension, and lyophilized powder were analyzed using an in vitro cytotoxicity assay and an in vivo model. RESULTS: The optimal PTX-DHA loaded PLGA-lecithin-NP was formulated (200 nm, PDI: 0.248 ± 0.003, Zeta potential: -33.60 ± 3.39 mV). Mannitol was selected for lyophilization. Lyo-NPs improved the stability of the NPs (1 year), wherein the physicochemical properties of the NPs were maintained (RDI was close to 1.0). An in-vitro cytotoxicity assay of PTX combined with DHA showed a synergistic anticancer effect (CI <1.0). The suppressive effects of Lyo-NPs on tumor growth in vivo were dose-dependent. While the cocktail of free drugs showed high toxicity (7.5 mg PTX-15 mg DHA/kg) in-vivo, Lyo-NPs showed no statistical differences in hematological and biochemical parameters compared to the control. CONCLUSION: Dual-drug-loaded hybrid PLGA-lecithin NP is a potential system to minimize severe side effects while enhancing antitumor efficacy, in which lyophilization is a key process to increase stability.

.

3.
J Orthop Res ; 42(4): 843-854, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37807082

RESUMEN

This study aims at assessing approaches for generating high-resolution magnetic resonance imaging- (MRI-) based synthetic computed tomography (sCT) images suitable for orthopedic care using a deep learning model trained on low-resolution computed tomography (CT) data. To that end, paired MRI and CT data of three anatomical regions were used: high-resolution knee and ankle data, and low-resolution hip data. Four experiments were conducted to investigate the impact of low-resolution training CT data on sCT generation and to find ways to train models on low-resolution data while providing high-resolution sCT images. Experiments included resampling of the training data or augmentation of the low-resolution data with high-resolution data. Training sCT generation models using low-resolution CT data resulted in blurry sCT images. By resampling the MRI/CT pairs before the training, models generated sharper images, presumably through an increase in the MRI/CT mutual information. Alternatively, augmenting the low-resolution with high-resolution data improved sCT in terms of mean absolute error proportionally to the amount of high-resolution data. Overall, the morphological accuracy was satisfactory as assessed by an average intermodal distance between joint centers ranging from 0.7 to 1.2 mm and by an average intermodal root-mean-squared distances between bone surfaces under 0.7 mm. Average dice scores ranged from 79.8% to 87.3% for bony structures. To conclude, this paper proposed approaches to generate high-resolution sCT suitable for orthopedic care using low-resolution data. This can generalize the use of sCT for imaging the musculoskeletal system, paving the way for an MR-only imaging with simplified logistics and no ionizing radiation.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Huesos , Extremidad Inferior , Procesamiento de Imagen Asistido por Computador/métodos
4.
AAPS PharmSciTech ; 24(4): 99, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024646

RESUMEN

The objective of this study was to propose a new coating film for biodegradable polymers and environmentally friendly processing. Here, a novel implementation of solid lipid nanoparticles (SLN) into a biodegradable alginate (ALG) film composition created a new gastric-resistant film for an enteric-release tablet. Experiments were performed on a water-soluble substance (thiamine nitrate) to characterize the effects of SLN upon the addition of the ALG coating formulation. The coated tablets or cast films were characterized based on delayed-release properties, surface morphology, moisture resistance, and chemical interactions. The SLN-ALG film displayed gastric-resistant properties (< 10% drug substance dissolved at pH 1.2) and rapid disintegration in the intestinal medium (pH 6.8). Morphological analysis using a microscope and scanning electron microscope confirmed the uniformity and smoothness of the SLN-ALG film, which improved the mechanical properties of the film. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated that SLN contributed to the formation of the film, which maintained free carboxylic groups, making the SLN-ALG film a higher acid resistance, but soluble in pH 6.8 buffer. These promising results suggest a novel nanotechnology-based coating formulation for various enteric-release dosage forms. Because of their biodegradability, the proposed ingredients and processes are safe and environment-friendly.


Asunto(s)
Alginatos , Polímeros , Alginatos/química , Comprimidos , Agua/química , Ácidos , Comprimidos Recubiertos/química
5.
Pharmaceutics ; 15(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678906

RESUMEN

Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.

6.
Curr Drug Deliv ; 20(7): 1015-1029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35473527

RESUMEN

BACKGROUND: Chemoresistance continues to limit the recovery of patients with cancer. New strategies, such as combination therapy or nanotechnology, can be further improved. OBJECTIVE: In this study, we applied the computational strategy by exploiting two databases (CellMiner and Prism) to sort out the cell lines sensitive to both anti-cancer drugs, paclitaxel (PTX) and dihydroartemisinin (DHA); both of which are potentially synergistic in several cell lines. METHODS: The combination of PTX and DHA was screened at different ratios to select the optimal ratio that could inhibit lung adenocarcinoma NCI-H23 the most. To further enhance therapeutic efficacy, these combinations of drugs were incorporated into a nanosystem. RESULTS: At a PTX:DHA ratio of 1:2 (w/w), the combined drugs obtained the best combination index (0.84), indicating a synergistic effect. The drug-loaded nanoparticles sized at 135 nm with the drug loading capacity of 15.5 ± 1.34 and 13.8 ± 0.56 corresponding to DHA and PTX, respectively, were used. The nano-sized particles improved drug internalization into the cells, resulting in the significant inhibition of cell growth at all tested concentrations (p < 0.001). Additionally, α-tubulin aggregation, DNA damage suggested the molecular mechanism behind cell death upon PTX-DHA-loaded nanoparticle treatment. Moreover, the rate of apoptosis increased from approximately 5% to more than 20%, and the expression of apoptotic proteins changed 4 and 3 folds corresponding to p-53 and Bcl-2, respectively. CONCLUSION: This study was designed thoroughly by screening cell lines for the optimization of formulations. This novel approach could pave the way for the selection of combined drugs for precise cancer treatment.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Sinergismo Farmacológico , Detección Precoz del Cáncer , Paclitaxel/farmacología , Antineoplásicos/farmacología , Apoptosis , Nanotecnología , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
7.
PLoS One ; 17(9): e0275347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36178928

RESUMEN

BACKGROUND: Sediment scour at downstream of hydraulic structures is one of the main reasons threatening its stability. Several soil properties and initial input data have been studied to investigate its influence on scour hole geometry by both physical and numerical models. However, parameters of resistance affecting sedimentation and erosion phenomena have not been carried out in the literature. Besides, the auxiliary-like wing walls prevalently used in many real applications have been rarely addressed for their effect on morphological change. RESULTS: In this study, a 3D Computational Fluid Dynamics model is utilized to calibrate the hydraulic characteristics of steady flow going through the culvert by comparison with experimental data, showing good agreement between water depth, velocity, and pressure profiles at the bottom of the boxed culvert. The results show that a grid cell of 0.015 m gave minimum NRMSE and MAE values in test cases. Another approach is numerical testing sediment scour at a meander flume outlet with a variety of roughness/d50 ratio (cs) and diversion wall types. The findings include the following: cs = 2.5 indicates the close agreement between the numerical and analytical results of maximum scour depth after the culvert; the influence of four types of wing wall on the geometrical deformation including erosion at the concave bank and deposition at the convex bank of the meander flume outlet; and two short headwalls represent the best solution that accounts for small morphological changes. CONCLUSIONS: The influence of the roughness parameter of soil material and headwall types on sediment scour at the meander exit channel of hydraulic structure can be estimated by the numerical model.


Asunto(s)
Sedimentos Geológicos , Movimientos del Agua , Animales , Hidrodinámica , Suelo , Agua
8.
Adv Gerontol ; 35(1): 68-75, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35522111

RESUMEN

The analysis of the results of the sociological study «Digital Technologies for Tomichs¼ of the elderly, carried out in Tomsk (May, 2021) using the focus-group discussion methodology, was carried out. The study showed that many elderly citizens have no psychological readiness and sustained motivation to integrate into digital reality. Causal relationships have been identified between the multifaceted involvement of older citizens in society and their skills in mastering and using digital technologies, which make people stronger and society as a whole more inclusive in the face of the digital future. Recommendations on the involvement of older people who have an interest in promoting ideas of digital quality of life and the opportunity to use new services in the process of digital transformation as active actors for the formation of a new, attractive and safe digital future are offered.


Asunto(s)
Motivación , Calidad de Vida , Anciano , Predicción , Humanos
9.
ACS Appl Mater Interfaces ; 14(1): 1270-1279, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34979804

RESUMEN

Charge carrier transport and corresponding thermoelectric properties are often affected by several parameters, necessitating a thorough comparative study for a profound understanding of the detailed conduction mechanism. Here, as a model system, we compare the electronic transport properties of two layered semiconductors, Sb2Si2Te6 and Bi2Si2Te6. Both materials have similar grain sizes and morphologies, yet their conduction characteristics are significantly different. We found that phase boundary scattering can be one of the main factors for Bi2Si2Te6 to experience significant charge carrier scattering, whereas Sb2Si2Te6 is relatively unaffected by the phenomenon. Furthermore, extensive point defect scattering in Sb2Si2Te6 significantly reduces its lattice thermal conductivity and results in high zT values across a broad temperature range. These findings provide novel insights into electron transport within these materials and should lead to strategies for further improving their thermoelectric performance.

10.
Int J Biol Macromol ; 194: 1010-1018, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843817

RESUMEN

Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was aimed to develop hydroxyethyl cellulose (HEC)-based gel containing metronidazole (MTZ) loaded in solid lipid nanoparticles (SLNs), and to enhance the antimicrobial activity of MTZ. SLNs were prepared using a combination method of solvent evaporation and hot homogenization. The results showed that the fabricated SLNs, comprising of Precirol (2.93%, w/v), Tween 80 (1.8%, w/v), and the drug:lipid ratio of 19.3% (w/w), were approximately 200 nm in size, with a narrow distribution. The HEC (3%, w/w)-based gel formed a smooth, homogeneous structure and had preferable mechanical and rheological properties. Moreover, the MTZ-loaded SLNs-based HEC gel (equivalent to 1% of MTZ, w/w) exhibited a sustained in vitro drug release pattern, optimal ex vivo permeability, and enhanced in vitro antimicrobial activity after 24 h of treatment. These findings indicate the potential of the MTZ-loaded SLNs-based HEC formulation for local drug delivery at the buccal mucosa in managing periodontal disease.


Asunto(s)
Celulosa/análogos & derivados , Portadores de Fármacos/química , Composición de Medicamentos , Geles/química , Liposomas/química , Metronidazol/administración & dosificación , Mucosa Bucal , Nanopartículas/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Celulosa/química , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Fenómenos Mecánicos , Metronidazol/química , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Mucosa Bucal/efectos de los fármacos , Permeabilidad , Análisis Espectral
11.
Ann Med Surg (Lond) ; 67: 102477, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34188907

RESUMEN

INTRODUCTION: Peptic ulcer perforation (PUP) is one of the most common critical surgical emergencies. The omentum flap is commonly used to cover a PUP. However, the omentum cannot be used in cases of severe peritonitis or previous surgical removal. This is the first study conducted in Vietnam that was designed to analyse the outcomes of patients with PUPs who were treated using the falciform ligament. METHOD: In this study, we retrospectively identified 40 consecutive patients who were treated for PUP at a single high-volume centre in Vietnam from February 2018 to February 2021. Peptic ulcer perforation was measured during diagnostic evaluation based on preoperative imaging, such as X-ray, and CT scan. Patients who had malignancy, laparoscopic surgery, omentopexy and nonoperative treatment were excluded from this research. RESULTS: Forty patients were included; the mean age of the patients was 66.3 years (range 33-99 years), and some patients had comorbid disease (57.5%), hypertension (30%), diabetes (10%), cirrhosis (7.5%), and chronic renal failure (7.5%). The PUPs were located in the duodenum (80%), or the pyloric (15%) and prepyloric (5%) regions. The procedures used to treat the patients included duodenostomy (32.5%), gastrojejunostomy (37.5%), and antrum resection (2.5%). The average operative time was 88.6 min (45-180 min), hospital stay was 9.6 days (2-35 days), and oral intake was started at 4.1 days (3-8 days); additionally, the 30-day mortality (17.5%) and incidences of pneumonia (25%), multiorgan failure (15%), acute liver failure (5%), wound infection (7.5%), and ulcer peptic fistula (0%) were assessed. Univariate tests showed that an ASA ≥ III and comorbidities, such as pulmonary complications, liver failure and multiorgan failure, were associated with mortality. The multivariate test showed that multiorgan failure was the only factor related to mortality. CONCLUSION: The falciform ligament can be efficiently used for the closure of a PUP. Although there were no instances of complication with a reperforated peptic ulcer, the mortality rate was slightly highly related to severe comorbidities and postoperative multiorgan failure.

12.
Neurochem Res ; 46(8): 1995-2007, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33950474

RESUMEN

Autism spectrum disorders (ASD) have heterogeneous etiologies involving dysfunction of central nervous systems, for which no effective pan-specific treatments are available. Ilex kudingcha (IK) C.J. Tseng is a nootropic botanical used in Asia for neuroprotection and improvement of cognition. This study establishes that a chemically characterized extract from IK (IKE) mitigates behavioral traits in the Drosophila melanogaster rugose mutant, whose traits resemble human ASD, and examines possible mechanisms. IKE treatment significantly ameliorated deficits in social interaction, short-term memory, and locomotor activity in Drosophila rugose, and significantly increased synaptic bouton number of size more than 2 µm2 in the neuromuscular junctions (NMJs) of Drosophila rugose. To clarify mechanism(s) of IKE action, methylphenidate (MPH), a dopamine transporter inhibitor, was included as a reference drug in the behavioral assays: MPH significantly improved social interaction and short-term memory deficit in Drosophila rugose; administration of the dopamine D1 receptor antagonist SCH23390 and dopamine D2 receptor antagonist sulpiride reversed the ameliorative effects of both MPH and IKE on the social interaction deficits of Drosophila rugose. To extend analysis of IKE treatment to the vertebrate central nervous system, ASD-associated gene expression in mouse hippocampus was studied by RNA-seq: IKE treatment altered the expression of genes coding phosphoinositide 3-kinases/protein kinase B (PI3K-Akt), proteins in glutamatergic, dopaminergic, serotonergic, and GABAergic synapses, cAMP response element-binding protein (CREB), and RNA transporter proteins. These results provide a foundation for further analysis of IKE as a candidate for treatment of some forms of ASD.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Nootrópicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Trastorno del Espectro Autista/metabolismo , Ritmo Circadiano/efectos de los fármacos , Drosophila melanogaster/genética , Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ilex/química , Locomoción/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Metilfenidato/uso terapéutico , Fenotipo , Hojas de la Planta/química , Terminales Presinápticos/efectos de los fármacos , Interacción Social/efectos de los fármacos , Vietnam
13.
Clin Ophthalmol ; 15: 1685-1690, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33911850

RESUMEN

PURPOSE: To evaluate the efficacy and safety of endoscopic orbital decompression in patients with Graves' orbitopathy. PATIENTS AND METHODS: This is a prospective study in Hanoi Medical University and a Military Hospital from December 2017 to December 2018. Twenty-eight orbits of fifteen patients were undergoing endoscopic orbital decompression for Graves' orbitopathy. Indications for surgery were proptosis in twenty-two orbits and compressive optic neuropathy in six orbits. The outcome measures were proptosis reduction, visual acuity, visual field test and diplopia. Post-operative complications including cerebrospinal fluid leakage, haemorrhage, lacrimal duct impairment, worsening diplopia, sinusitis and cellulitis were collected. RESULTS: The mean proptosis reduction was 2.23 mm. Visual acuity and medium deviation in the Humphrey visual field were significantly improved in four of six eyes with compressive optic neuropathy. There was one patient with intra-operative excessive bleeding which resolved without affecting visual outcome. Post-operatively, two patients developed a new onset of diplopia and two others worsened diplopia; three have already undergone successful strabismus surgery and moderate proptosis reduction. CONCLUSION: Endoscopic orbital decompression surgery was effectively and safely to manage compressive optic neuropathy of Graves' orbitopathy and moderately reduce proptosis in a group of Vietnamese patients.

14.
Pharm Res ; 37(7): 129, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32548664

RESUMEN

PURPOSE: Development of a nanoplatform constructed by the PEG-dual drug conjugation for co-delivery of paclitaxel (PTX) and Dihydroartemisinin (DHA) to the tumor. METHODS: PEG was conjugated with PTX and DHA to form PTX-PEG-DHA complex as a nanocarrier. The PTX and DHA were co-encapsulated in PTX-PEG-DHA nanoparticles (PD@PPD NPs) by the emulsion evaporation method. The physicochemical properties of PD@PPD Nps were characterized, including size, zeta potential, and morphology. The drug loading capacity and entrapment efficiency, in vitro drug release at different pH conditions were also evaluated. For in vitro assessment, the effects of the NPs on HT-29 colorectal cancer cells, including intracellular uptake, cytotoxicity, and Bcl-2 protein expression were assessed. The in vivo distribution of the NPs was investigated by labelling the NPs with Cyanine 5.5 fluorophore. Finally, the antitumor efficacy of the NPs was evaluated in HT-29 tumor-bearing mice. RESULTS: The nanoparticles were formed at small size (~114 nm) and narrow distribution. The combination of PTX and DHA in the DHA-PEG-PTX nanosystems (PD@PPD) showed remarkably increased apoptosis in colorectal adenocarcinoma HT-29 cells, as compared to free drug treatment. More importantly, the PD@PPD nanoparticles exhibited significantly higher accumulation in the tumor site owing to the enhanced permeability and retention (EPR) effect, effectively restrained the tumor growth in vivo at low-dose of PTX while reducing the systemic toxicity. CONCLUSIONS: The combination of PTX and DHA in a PEG-conjugated dual-drug co-delivery system can minimize the severe side effect associated with the high-dose of PTX while enhancing the antitumor efficacy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/química , Artemisininas/química , Neoplasias Colorrectales/tratamiento farmacológico , Nanocápsulas/química , Paclitaxel/química , Polietilenglicoles/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Artemisininas/farmacología , Permeabilidad de la Membrana Celular , Composición de Medicamentos , Liberación de Fármacos , Colorantes Fluorescentes/química , Regulación de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Óptica , Paclitaxel/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Distribución Tisular
15.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344718

RESUMEN

Eucalypts are the most planted trees worldwide, but most of them are frost sensitive. Overexpressing transcription factors for CRT-repeat binding factors (CBFs) in transgenic Eucalyptus confer cold resistance both in leaves and stems. While wood plays crucial roles in trees and is affected by environmental cues, its potential role in adaptation to cold stress has been neglected. Here, we addressed this question by investigating the changes occurring in wood in response to the overexpression of two CBFs, taking advantage of available transgenic Eucalyptus lines. We performed histological, biochemical, and transcriptomic analyses on xylem samples. CBF ectopic expression led to a reduction of both primary and secondary growth, and triggered changes in xylem architecture with smaller and more frequent vessels and fibers exhibiting reduced lumens. In addition, lignin content and syringyl/guaiacyl (S/G) ratio increased. Consistently, many genes of the phenylpropanoid and lignin branch pathway were upregulated. Most of the features of xylem remodeling induced by CBF overexpression are reminiscent of those observed after long exposure of Eucalyptus trees to chilling temperatures. Altogether, these results suggest that CBF plays a central role in the cross-talk between response to cold and wood formation and that the remodeling of wood is part of the adaptive strategies to face cold stress.


Asunto(s)
Respuesta al Choque por Frío , Factores de Unión al Sitio Principal/genética , Eucalyptus/genética , Expresión Génica , Factores de Transcripción/genética , Madera/anatomía & histología , Madera/genética , Factores de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lignina/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Madera/química , Xilema/genética , Xilema/metabolismo
16.
Int J Pharm ; 570: 118661, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31491482

RESUMEN

There have been many strategies to increase solubility, dissolution rates, and oral bioavailability of fenofibrate such as micronization, nanonization, solid dispersion, and emulsion so far. To our knowledge, only first three technologies have been applied in producing marketed products, and no combination of solid dispersion and pellet has been found even in laboratory-based reports. Therefore, the aim of this study was to develop novel solid dispersion-based pellets via an one-step process directly from fenofibrate powder using layering method. Developed fenofibrate pellets were in vitro characterized on size distribution, dissolution rates, sensory evaluation and stability. In addition, the transformation from crystalline fenofibrate to amorphous fenofibrate, and intermolecular interactions of fenofibrate in solid dispersion were confirmed using physico-chemical methods. The dissolution rate of pellets containing fenofibrate was significantly higher than that of the reference, Lipanthyl® 160 mg tablets at early stage, satisfying the criteria in USP 38. The pellets, then, were packed in hard capsules for bioequivalence studies in experimental beagle dogs using a validated HPLC assay. Final findings of the present study should be beneficial for further development of new fenofibrate formulations containing solid dispersion-based pellets which were bioequivalent to Lipanthyl® 160 mg tablets.


Asunto(s)
Implantes de Medicamentos/química , Fenofibrato/química , Administración Oral , Animales , Disponibilidad Biológica , Cápsulas/química , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión/métodos , Perros , Emulsiones/química , Hipolipemiantes/química , Masculino , Tamaño de la Partícula , Solubilidad/efectos de los fármacos , Comprimidos/química , Equivalencia Terapéutica
17.
Adv Mater ; 30(51): e1805454, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30334296

RESUMEN

Emulation of brain-like signal processing is the foundation for development of efficient learning circuitry, but few devices offer the tunable conductance range necessary for mimicking spatiotemporal plasticity in biological synapses. An ionic semiconductor which couples electronic transitions with drift-diffusive ionic kinetics would enable energy-efficient analog-like switching of metastable conductance states. Here, ionic-electronic coupling in halide perovskite semiconductors is utilized to create memristive synapses with a dynamic continuous transition of conductance states. Coexistence of carrier injection barriers and ion migration in the perovskite films defines the degree of synaptic plasticity, more notable for the larger organic ammonium and formamidinium cations than the inorganic cesium counterpart. Optimized pulsing schemes facilitates a balanced interplay of short- and long-term plasticity rules like paired-pulse facilitation and spike-time-dependent plasticity, cardinal for learning and computing. Trained as a memory array, halide perovskite synapses demonstrate reconfigurability, learning, forgetting, and fault tolerance analogous to the human brain. Network-level simulations of unsupervised learning of handwritten digit images utilizing experimentally derived device parameters, validates the utility of these memristors for energy-efficient neuromorphic computation, paving way for novel ionotronic neuromorphic architectures with halide perovskites as the active material.

18.
ACS Appl Mater Interfaces ; 10(21): 17957-17962, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29741082

RESUMEN

In recent years, two-dimensional black phosphorus (BP) has seen a surge of research because of its unique optical, electronic, and chemical properties. BP has also received interest as a potential thermoelectric material because of its high Seebeck coefficient and excellent charge mobility, but further development is limited by the high cost and poor scalability of traditional BP synthesis techniques. In this work, high-quality BP is synthesized using a low-cost method and utilized in a PEDOT:PSS film to create the first ever BP composite thermoelectric material. The thermoelectric properties are found to be greatly enhanced after the BP addition, with the power factor of the film, with 2 wt % BP (36.2 µW m-1 K-2) representing a 109% improvement over the pure PEDOT:PSS film (17.3 µW m-1 K-2). A simultaneous increase of mobility and decrease of the carrier concentration is found to occur with the increasing BP wt %, which allows for both Seebeck coefficient and electrical conductivity to be increased. These results show the potential of this low-cost BP for use in energy devices.

19.
Arch Pharm Res ; 40(12): 1420-1432, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29027133

RESUMEN

The CD44 receptor, which is upregulated in many cancer cells, provides a selective cellular surface for targeted drug delivery systems. We developed a hybrid nanocarrier for the CD44-targeted delivery of ibuprofen (IBU) and paclitaxel (PTX). The solid lipid nanoparticles (SLNs) were prepared by a hot-melt oil/water emulsion technique and then coated with hyaluronic acid (HA) by electrostatic interactions. The final SLN were spherical with a hydrodynamic diameter (Z) of 72.16 ± 2.9 nm, polydispersity index (PDI) of 0.276 ± 0.009, and zeta potential (ZP) of 28.20 ± 0.69 mV. Similarly, SLN coated with HA (SLN-HA) exhibited acceptable physical properties (Z 169.3 ± 0.55 nm, PDI 0.285 ± 0.004, and ZP - 10.5 ± 0.15 mV). Cell viability assays showed that the combination of IBU, a chemopreventive agent, and PTX exerted a synergistic inhibitory effect on the proliferation of cancer cells (CI < 1.0). Additionally, our observations indicated that both SLN and SLN-HA enhanced apoptosis and cellular uptake compared to the cocktail of free drugs. HA indicated its affinity for cancer cells through the improvement of cellular uptake and induction of apoptosis. These results clearly indicated that these nanoparticle systems hold great promise for drug delivery in breast cancer treatment.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Receptores de Hialuranos/metabolismo , Ibuprofeno/farmacología , Nanopartículas/química , Paclitaxel/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ácido Hialurónico/química , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Paclitaxel/administración & dosificación , Paclitaxel/química , Células Tumorales Cultivadas
20.
Drug Deliv Transl Res ; 7(5): 664-673, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28776220

RESUMEN

Lipid carrier-mediated transdermal drug delivery offers several advantages because it is non-irritating and non-toxic, provides effective control of drug release, and forms an adhesive film that hydrates the outer skin layers. However, to penetrate the deeper skin layers, these formulations need to overcome several barriers in the stratum corneum. This study evaluates factors influencing particle size and drug-loading capacity, which play a key role in drug permeation and efficacy. Diclofenac sodium was chosen as the model drug. The fabrication of diclofenac sodium-loaded lipid nanoparticles was optimized by modulating several parameters, including the lipids and surfactants employed, the drug/lipid ratio, and the pH of the aqueous phase. The physical properties and loading efficiencies of the nanoparticles were characterized. The optimized formulation was then dispersed into a polymer solution to form a gel, which demonstrated a sustained ex vivo permeation of diclofenac sodium over 24 h through excised rat skin and a higher drug penetrating capacity than that of a commercially available gel. In vivo anti-inflammatory activity was assessed in a rat carrageenan-induced paw edema model; the anti-edema effects of the prepared gel and commercially available gel over 24 h were comparable. The present findings indicate the effects of particle size and drug loading on the ability of nanostructured lipid carrier preparations to provide transdermal drug delivery.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Carragenina/efectos adversos , Diclofenaco/administración & dosificación , Inflamación/tratamiento farmacológico , Administración Cutánea , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Química Farmacéutica , Diclofenaco/química , Diclofenaco/farmacocinética , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Lípidos , Nanoestructuras , Tamaño de la Partícula , Permeabilidad , Ratas , Piel/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...