Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Rev E ; 106(6-2): 065201, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671106

RESUMEN

The Rayleigh-Taylor instability is strongly modified in the presence of a vertical mean magnetic field. Perturbations are first stretched in the vertical direction with no mixing due to the inhibition of small-scale shear instabilities. Then smooth elongated fingers eventually break after transition to turbulence, and a strong anisotropy persists. For increasing Alfvèn velocities, the growth rate of the mixing zone in the fully turbulent regime is decreased due to the conversion of potential energy into turbulent magnetic energy. A new theoretical prediction for the growth rate based on turbulent quantities is proposed and assessed with high-resolution direct numerical simulations of the Boussinesq-Navier-Stokes equations under the magnetohydrodynamics approximation.


Asunto(s)
Campos Magnéticos , Anisotropía , Fenómenos Físicos
2.
Entropy (Basel) ; 21(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33267040

RESUMEN

This paper investigates the universality of the Eulerian velocity structure functions using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in experiments and direct numerical simulations (DNS) of the Navier-Stokes equations. It shows that the numerical and experimental velocity structure functions up to order 9 follow a log-universality (Castaing et al. Phys. D Nonlinear Phenom. 1993); this leads to a collapse on a universal curve, when units including a logarithmic dependence on the Reynolds number are used. This paper then investigates the meaning and consequences of such log-universality, and shows that it is connected with the properties of a "multifractal free energy", based on an analogy between multifractal and thermodynamics. It shows that in such a framework, the existence of a fluctuating dissipation scale is associated with a phase transition describing the relaminarisation of rough velocity fields with different Hölder exponents. Such a phase transition has been already observed using the Lagrangian velocity structure functions, but was so far believed to be out of reach for the Eulerian data.

3.
Phys Rev E ; 94(4-1): 043103, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27841461

RESUMEN

The "Rayleigh line" µ=η^{2}, where µ=Ω_{o}/Ω_{i} and η=r_{i}/r_{o} are respectively the rotation and radius ratios between inner (subscript i) and outer (subscript o) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η^{2}<µ<1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range µ<η^{2} has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold µ=η^{2} seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...