Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr ; 154(2): 505-515, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141773

RESUMEN

BACKGROUND: Continuous feeding does not elicit an optimal anabolic response in skeletal muscle but is required for some preterm infants. We reported previously that intermittent intravenous pulses of leucine (Leu; 800 µmol Leu·kg-1·h-1 every 4 h) to continuously fed pigs born at term promoted mechanistic target of rapamycin complex 1 (mTORC1) activation and protein synthesis in skeletal muscle. OBJECTIVES: The aim was to determine the extent to which intravenous Leu pulses activate mTORC1 and enhance protein synthesis in the skeletal muscle of continuously fed pigs born preterm. METHODS: Pigs delivered 10 d preterm was advanced to full oral feeding >4 d and then assigned to 1 of the following 4 treatments for 28 h: 1) ALA (continuous feeding; pulsed with 800 µmol alanine·kg-1·h-1 every 4 h; n = 8); 2) L1× (continuous feeding; pulsed with 800 µmol Leu·kg-1·h-1 every 4 h; n = 7); 3) L2× (continuous feeding; pulsed with 1600 µmol Leu·kg-1·h-1 every 4 h; n = 8); and 4) INT (intermittent feeding every 4 h; supplied with 800 µmol alanine·kg-1 per feeding; n = 7). Muscle protein synthesis rates were determined with L-[2H5-ring]Phenylalanine. The activation of insulin, amino acid, and translation initiation signaling pathways were assessed by Western blot. RESULTS: Peak plasma Leu concentrations were 134% and 420% greater in the L2× compared to the L1× and ALA groups, respectively (P < 0.01). Protein synthesis was greater in the L2× than in the ALA and L1× groups in both the longissimus dorsi and gastrocnemius muscles (P < 0.05) but not different from the INT group (P > 0.10). Amino acid signaling upstream and translation initiation signaling downstream of mTORC1 largely corresponded to the differences in protein synthesis. CONCLUSIONS: Intravenous Leu pulses potentiate mTORC1 activity and protein synthesis in the skeletal muscles of continuously fed preterm pigs, but the amount required is greater than in pigs born at term.


Asunto(s)
Nutrición Enteral , Recien Nacido Prematuro , Animales , Porcinos , Recién Nacido , Humanos , Leucina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales Recién Nacidos , Músculo Esquelético/metabolismo , Aminoácidos/metabolismo , Alanina/metabolismo
2.
Pediatr Res ; 94(1): 143-152, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36627358

RESUMEN

BACKGROUND: Postnatal growth failure in premature infants is associated with reduced lean mass accretion. Prematurity impairs the feeding-induced stimulation of translation initiation and protein synthesis in the skeletal muscle of neonatal pigs. The objective was to determine whether body weight independently contributes to the blunted postprandial protein synthesis. METHODS: Preterm and term pigs that were either fasted or fed were stratified into quartiles according to birth weight to yield preterm and term groups of similar body weight; first and second quartiles of preterm pigs and third and fourth quartiles of term pigs were compared (preterm-fasted, n = 23; preterm-fed, n = 25; term-fasted, n = 21; term-fed, n = 21). Protein synthesis rates and mechanistic target of rapamycin complex 1 (mTORC1) activation in skeletal muscle were determined. RESULTS: Relative body weight gain was lower in preterm compared to term pigs. Prematurity attenuated the feeding-induced increase in mTORC1 activation in longissimus dorsi and gastrocnemius muscles (P < 0.05). Protein synthesis in gastrocnemius (P < 0.01), but not in longissimus dorsi muscle, was blunted by preterm birth. CONCLUSION: A lower capacity of skeletal muscle to respond adequately to feeding may contribute to reduced body weight gain and lean mass accretion in preterm infants. IMPACT: This study has shown that the feeding-induced increase in protein synthesis of skeletal and cardiac muscle is blunted in neonatal pigs born preterm compared to pigs born at term independently of birth weight. These findings support the notion that preterm birth, and not low birth weight, impairs the capacity of skeletal and cardiac muscle to upregulate mechanistic target of rapamycin-dependent anabolic signaling pathways and protein synthesis in response to the postprandial increase in insulin and amino acids. These observations suggest that a blunted anabolic response to feeding contributes to reduced lean mass accretion and altered body composition in preterm infants.


Asunto(s)
Nacimiento Prematuro , Recién Nacido , Humanos , Femenino , Animales , Porcinos , Animales Recién Nacidos , Peso al Nacer , Nacimiento Prematuro/metabolismo , Proteínas Musculares/metabolismo , Recien Nacido Prematuro , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
3.
JPEN J Parenter Enteral Nutr ; 47(2): 276-286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36128996

RESUMEN

BACKGROUND: Extrauterine growth restriction is a common complication of preterm birth. Leucine (Leu) is an agonist for the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway that regulates translation initiation and protein synthesis in skeletal muscle. Previously, we showed that intermittent intravenous pulses of Leu to neonatal pigs born at term receiving continuous enteral nutrition increases muscle protein synthesis and lean mass accretion. Our objective was to determine the impact of intermittent intravenous pulses of Leu on muscle protein anabolism in preterm neonatal pigs administered continuous parenteral nutrition. METHODS: Following preterm delivery (on day 105 of 115 gestation), pigs were fitted with umbilical artery and jugular vein catheters and provided continuous parenteral nutrition. Four days after birth, pigs were assigned to receive intermittent Leu (1600 µmol kg-1 h-1 ; n = 8) or alanine (1600 µmol kg-1 h-1 ; n = 8) parenteral pulses every 4 h for 28 h. Anabolic signaling and fractional protein synthesis were determined in skeletal muscle. RESULTS: Leu concentration in the longissimus dorsi and gastrocnemius muscles increased in the leucine (LEU) group compared with the alanine (ALA) group (P < 0.0001). Despite the Leu-induced disruption of the Sestrin2·GATOR2 complex, which inhibits mTORC1 activation, in these muscles (P < 0.01), the abundance of mTOR·RagA and mTOR·RagC was not different. Accordingly, mTORC1-dependent activation of 4EBP1, S6K1, eIF4E·eIF4G, and protein synthesis were not different in any muscle between the LEU and ALA groups. CONCLUSION: Intermittent pulses of Leu do not enhance muscle protein anabolism in preterm pigs supplied continuous parenteral nutrition.


Asunto(s)
Nacimiento Prematuro , Recién Nacido , Femenino , Humanos , Animales , Porcinos , Leucina/metabolismo , Leucina/farmacología , Animales Recién Nacidos , Nacimiento Prematuro/metabolismo , Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Alanina/metabolismo , Proteínas Musculares/metabolismo , Nutrición Parenteral , Biosíntesis de Proteínas
4.
Am J Physiol Endocrinol Metab ; 321(6): E737-E752, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719946

RESUMEN

Optimizing enteral nutrition for premature infants may help mitigate extrauterine growth restriction and adverse chronic health outcomes. Previously, we showed in neonatal pigs born at term that lean growth is enhanced by intermittent bolus compared with continuous feeding. The objective was to determine if prematurity impacts how body composition, muscle protein synthesis, and myonuclear accretion respond to feeding modality. Following preterm delivery, pigs were fed equivalent amounts of formula delivered either as intermittent boluses (INT; n = 30) or continuously (CONT; n = 14) for 21 days. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and muscle growth was assessed by morphometry, myonuclear accretion, and satellite cell abundance. Tissue anabolic signaling and fractional protein synthesis rates were determined in INT pigs in postabsorptive (INT-PA) and postprandial (INT-PP) states and in CONT pigs. Body weight gain and composition did not differ between INT and CONT pigs. Longissimus dorsi (LD) protein synthesis was 34% greater in INT-PP than INT-PA pigs (P < 0.05) but was not different between INT-PP and CONT pigs. Phosphorylation of 4EBP1 and S6K1 and eIF4E·eIF4G abundance in LD paralleled changes in LD protein synthesis. Satellite cell abundance, myonuclear accretion, and fiber cross-sectional area in LD did not differ between groups. These results suggest that, unlike pigs born at term, intermittent bolus feeding does not enhance lean growth more than continuous feeding in pigs born preterm. Premature birth attenuates the capacity of skeletal muscle to respond to cyclical surges in insulin and amino acids with intermittent feeding in early postnatal life.NEW & NOTEWORTHY Extrauterine growth restriction often occurs in premature infants but may be mitigated by optimizing enteral feeding strategies. We show that intermittent bolus feeding does not increase skeletal muscle protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in preterm pigs. This attenuated anabolic response of muscle to intermittent bolus feeding, compared with previous observations in pigs born at term, may contribute to deficits in lean mass that many premature infants exhibit into adulthood.


Asunto(s)
Nutrición Enteral , Músculo Esquelético/crecimiento & desarrollo , Biosíntesis de Proteínas , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Núcleo Celular/metabolismo , Nutrición Enteral/métodos , Nutrición Enteral/veterinaria , Femenino , Crecimiento y Desarrollo/fisiología , Masculino , Modelos Animales , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Embarazo , Nacimiento Prematuro , Porcinos
5.
J Nutr ; 151(9): 2636-2645, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34159368

RESUMEN

BACKGROUND: Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear. OBJECTIVES: We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term. METHODS: Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured. RESULTS: Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P  < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P  < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05). CONCLUSIONS: The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.


Asunto(s)
Aminoácidos , Insulina , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Femenino , Insulina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación , Porcinos
6.
Am J Physiol Endocrinol Metab ; 320(3): E551-E565, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427053

RESUMEN

Extrauterine growth restriction in premature infants is largely attributed to reduced lean mass accretion and is associated with long-term morbidities. Previously, we demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in skeletal muscle of neonatal pigs. The objective of the current study was to determine whether the blunted feeding response is mediated by reduced responsiveness to insulin, amino acids, or both. Pigs delivered by cesarean section preterm (PT; 103 days, n = 25) or at term (T; 112 days, n = 26) were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps four days after delivery. Indices of mechanistic target of rapamycin complex 1 (mTORC1) signaling and fractional protein synthesis rates were measured after 2 h. Although longissimus dorsi (LD) muscle protein synthesis increased in response to both INS and AA, the increase was 28% lower in PT than in T. Upstream of mTORC1, Akt phosphorylation, an index of insulin signaling, was increased with INS but was 40% less in PT than in T. The abundances of mTOR·RagA and mTOR·RagC, indices of amino acid signaling, increased with AA but were 25% less in PT than in T. Downstream of mTORC1, eIF4E·eIF4G abundance was increased by both INS and AA but attenuated by prematurity. These results suggest that preterm birth blunts both insulin- and amino acid-induced activation of mTORC1 and protein synthesis in skeletal muscle, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the high prevalence of extrauterine growth restriction in prematurity.NEW & NOTEWORTHY Extrauterine growth faltering is a major complication of premature birth, but the underlying cause is poorly understood. Our results demonstrate that preterm birth blunts both the insulin-and amino acid-induced activation of mTORC1-dependent translation initiation and protein synthesis in skeletal muscle, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced accretion of lean mass and extrauterine growth restriction of premature infants.


Asunto(s)
Aminoácidos/farmacología , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Nacimiento Prematuro/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Femenino , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Porcinos
7.
Curr Dev Nutr ; 4(12): nzaa170, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33381676

RESUMEN

BACKGROUND: Orogastric tube feeding is frequently prescribed for neonates who cannot ingest food normally. In a piglet model of the neonate, greater skeletal muscle growth is sustained by upregulation of translation initiation signaling when nutrition is delivered by intermittent bolus meals, rather than continuously. OBJECTIVES: The objective of this study was to determine the long-term effects of feeding frequency on organ growth and the mechanism by which feeding frequency modulates protein anabolism in these organs. METHODS: Eighteen neonatal pigs were fed by gastrostomy tube the same amount of a sow milk replacer either by continuous infusion (CON) or on an intermittent bolus schedule (INT). After 21 d of feeding, the pigs were killed without interruption of feeding (CON; n = 6) or immediately before (INT-0; n = 6) or 60 min after (INT-60; n = 6) a meal, and fractional protein synthesis rates and activation indexes of signaling pathways that regulate translation initiation were measured in the heart, jejunum, ileum, kidneys, and liver. RESULTS: Compared with continuous feeding, intermittent feeding stimulated the growth of the liver (+64%), jejunum (+48%), ileum (+40%), heart (+64%), and kidney (+56%). The increases in heart, kidney, jejunum, and ileum masses were proportional to whole body lean weight gain, but liver weight gain was greater in the INT-60 than the CON, and intermediate for the INT-0 group. For the liver and ileum, but not the heart, kidney, and jejunum, INT-60 compared with CON pigs had greater fractional protein synthesis rates (22% and 48%, respectively) and was accompanied by an increase in ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 phosphorylation. CONCLUSIONS: These results suggest that intermittent bolus compared with continuous orogastric feeding enhances organ growth and that in the ileum and liver, intermittent feeding enhances protein synthesis by stimulating translation initiation.

8.
Amino Acids ; 52(9): 1319-1335, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32974749

RESUMEN

When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 µmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, ß-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.


Asunto(s)
Suplementos Dietéticos , Leucina/farmacología , Metaboloma/efectos de los fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Atrofia Muscular/patología , Transcriptoma/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Leucina/administración & dosificación , Proteínas Musculares/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Fosforilación , Porcinos
9.
J Nutr ; 150(1): 22-30, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518419

RESUMEN

BACKGROUND: Rapid growth of skeletal muscle in the neonate requires the coordination of protein deposition and myonuclear accretion. During this developmental stage, muscle protein synthesis is highly sensitive to amino acid supply, especially Leu, but we do not know if this is true for satellite cells, the source of muscle fiber myonuclei. OBJECTIVE: We examined whether dietary protein restriction reduces myonuclear accretion in the neonatal pig, and if any reduction in myonuclear accretion is mitigated by restoring Leu intake. METHODS: Neonatal pigs (1.53 ± 0.2 kg) were fitted with jugular vein and gastric catheters and fed 1 of 3 isoenergetic milk replacers every 4 h for 21 d: high protein [HP; 22.5 g protein/(kg/d); n= 8]; restricted protein [RP; 11.2 g protein/(kg/d); n= 10]; or restricted protein with Leu [RPL; 12.0 g protein/(kg/d); n= 10]. Pigs were administered 5-bromo-2'-deoxyuridine (BrdU; 15 mg/kg) intravenously every 12 h from days 6 to 8. Blood was sampled on days 6 and 21 to measure plasma Leu concentrations. On day 21, pigs were killed and the longissimus dorsi (LD) muscle was collected to measure cell morphometry, satellite cell abundance, myonuclear accretion, and insulin-like growth factor (IGF) system expression. RESULTS: Compared with HP pigs, postprandial plasma Leu concentration in RP pigs was 37% and 47% lower on days 6 and 21, respectively (P < 0.05); Leu supplementation in RPL pigs restored postprandial Leu to HP concentrations. Dietary protein restriction reduced LD myofiber cross-sectional area by 21%, satellite cell abundance by 35%, and BrdU+ myonuclear abundance by 25% (P < 0.05); Leu did not reverse these outcomes. Dietary protein restriction reduced LD muscle IGF2 expression by 60%, but not IGF1 or IGF1R expression (P < 0.05); Leu did not rescue IGF2 expression. CONCLUSIONS: Satellite cell abundance and myonuclear accretion in neonatal pigs are compromised when dietary protein intake is restricted and are not restored with Leu supplementation.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Leucina/administración & dosificación , Células Satélite del Músculo Esquelético/efectos de los fármacos , Porcinos/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Dieta/veterinaria , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología
10.
Am J Physiol Endocrinol Metab ; 317(5): E839-E851, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503514

RESUMEN

Postnatal growth of lean mass is commonly blunted in preterm infants and may contribute to short- and long-term morbidities. To determine whether preterm birth alters the protein anabolic response to feeding, piglets were delivered at term or preterm, and fractional protein synthesis rates (Ks) were measured at 3 days of age while fasted or after an enteral meal. Activation of signaling pathways that regulate protein synthesis and degradation were determined. Relative body weight gain was lower in preterm than in term. Gestational age at birth (GAB) did not alter fasting plasma glucose or insulin, but when fed, plasma insulin and glucose rose more slowly, and reached peak value later, in preterm than in term. Feeding increased Ks in longissimus dorsi (LD) and gastrocnemius muscles, heart, pancreas, and kidney in both GAB groups, but the response was blunted in preterm. In diaphragm, lung, jejunum, and brain, feeding increased Ks regardless of GAB. Liver Ks was greater in preterm than term and increased with feeding regardless of GAB. In all tissues, changes in 4EBP1, S6K1, and PKB phosphorylation paralleled changes in Ks. In LD, eIF4E·eIF4G complex formation, phosphorylation of TSC2, mTOR, and rpS6, and association of mammalian target of rapamycin (mTOR1) complex with RagA, RagC, and Rheb were increased by feeding and blunted by prematurity. There were no differences among groups in LD protein degradation markers. Our results demonstrate that preterm birth reduces weight gain and the protein synthetic response to feeding in muscle, pancreas, and kidney, and this is associated with blunted insulin- and/or amino acid-induced translation initiation signaling.


Asunto(s)
Animales Recién Nacidos , Ingestión de Alimentos , Biosíntesis de Proteínas , Transducción de Señal , Animales , Peso al Nacer , Glucemia/metabolismo , Femenino , Edad Gestacional , Riñón/metabolismo , Músculo Esquelético/metabolismo , Fenómenos Fisiológicos de la Nutrición , Páncreas/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/metabolismo , Aumento de Peso
11.
Am J Clin Nutr ; 108(4): 830-841, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239549

RESUMEN

Background: Orogastric tube feeding is indicated in neonates with an impaired ability to ingest food normally and can be administered with an intermittent bolus or continuous feeding schedule. Objectives: The objectives were to 1) compare the long-term effect of continuous with intermittent feeding on growth using the newborn pig as a model, 2) determine whether feeding frequency alters lean tissue and fat mass gain, and 3) identify the signaling mechanisms by which protein deposition is controlled in skeletal muscle in response to feeding frequency. Design: Neonatal pigs were fed the same amount of a balanced formula by orogastric tube either as an intermittent bolus meal every 4 h (INT) or as a continuous infusion (CON). Body composition was assessed at the start and end of the study by dual-energy X-ray absorptiometry, and hormone and substrate profiles, muscle mass, protein synthesis, and indexes of nutrient and insulin signaling were measured after 21 d. Results: Body weight, lean mass, spine length, and skeletal muscle mass were greater in the INT group than in the CON group. Skeletal muscle fractional protein synthesis rates were greater in the INT group after a meal than in the CON group and were associated with higher circulating branched-chain amino acid and insulin concentrations. Skeletal muscle protein kinase B (PKB) and ribosomal protein S6 kinase phosphorylation and eukaryotic initiation factor (eIF) 4E-eIF4G complex formation were higher, whereas eIF2α phosphorylation was lower in the INT group than in the CON group, indicating enhanced activation of insulin and amino acid signaling to translation initiation. Conclusions: These results suggest that when neonates are fed the same amounts of nutrients as intermittent meals rather than continuously there is greater lean growth. This response can be ascribed, in part, to the pulsatile pattern of amino acids, insulin, or both induced by INT, which enables the responsiveness of anabolic pathways to feeding to be sustained chronically in skeletal muscle.


Asunto(s)
Composición Corporal/fisiología , Compartimentos de Líquidos Corporales/fisiología , Conducta Alimentaria/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Biosíntesis de Proteínas , Aumento de Peso/fisiología , Tejido Adiposo/metabolismo , Aminoácidos/sangre , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Compartimentos de Líquidos Corporales/metabolismo , Ingestión de Energía , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Recién Nacido , Insulina/sangre , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Columna Vertebral/crecimiento & desarrollo , Porcinos
12.
Amino Acids ; 50(7): 943-959, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29728917

RESUMEN

The objective of this study was to determine if enteral leucine or branched-chain amino acid (BCAA) supplementation increases muscle protein synthesis in neonates who consume less than their protein and energy requirements, and whether this increase is mediated via the upregulation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway or the decrease in muscle protein degradation signaling. Neonatal pigs were fed milk replacement diets containing reduced energy and protein (R), R supplemented with BCAA (RBCAA), R supplemented with leucine (RL), or complete protein and energy (CON) at 4-h intervals for 9 (n = 24) or 21 days (n = 22). On days 9 and 21, post-prandial plasma amino acids and insulin were measured at intervals for 4 h; muscle protein synthesis rate and activation of mTOR-related proteins were determined at 120 min post-feeding in muscle. For all parameters measured, the effects of diet were not different between day 9 or day 21. Compared to CON and R, plasma leucine and BCAA were higher (P ≤ 0.01) in RL- and RBCAA-fed pigs, respectively. Body weight gain, protein synthesis, and activation of S6 kinase (S6K1), 4E-binding protein (4EBP1), and eukaryotic initiation factor 4 complex (eIF4E·eIF4G) were decreased in RBCAA, RL, and R relative to CON (P < 0.01). RBCAA and RL upregulated (P ≤ 0.01) S6K1, 4EBP1, and eIF4E·eIF4G compared to R. In conclusion, when protein and energy are restricted, both leucine and BCAA supplementation increase mTOR activation, but do not enhance skeletal muscle protein synthesis and muscle growth in neonatal pigs.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Alimentación Animal , Leucina/farmacología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animales , Animales Recién Nacidos , Porcinos
13.
Am J Physiol Endocrinol Metab ; 311(4): E791-E801, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27624100

RESUMEN

Sepsis disrupts skeletal muscle proteostasis and mitigates the anabolic response to leucine (Leu) in muscle of mature animals. We have shown that Leu stimulates muscle protein synthesis (PS) in healthy neonatal piglets. To determine if supplemental Leu can stimulate PS and reduce protein degradation (PD) signaling in neonatal muscle during endotoxemia, overnight-fasted neonatal pigs were infused for 8 h with LPS or saline while plasma amino acids, glucose, and insulin were maintained at fasting levels during pancreatic-substrate clamps. Leu or saline was infused during the last hour. Markers of PS and PD were determined in skeletal muscle. Compared with controls, Leu increased PS in longissimus dorsi (LD), gastrocnemius, and soleus muscles. LPS decreased PS in these three muscles by 36%, 28%, and 38%, but Leu antagonized that reduction by increasing PS by 84%, 81%, and 83%, respectively, when supplemented to LPS. Leu increased eukaryotic translation initiation factor (eIF)3b-raptor interactions, eIF4E-binding protein-1, and S6 kinase 1 phosphorylation as well as eIF4E·eIF4G complex formation in LD, gastrocnemius, and soleus muscles of control and LPS-treated pigs. In LD muscle, LPS increased the light chain (LC)3-II-to-LC3 ratio and muscle-specific RING finger (MuRF-1) abundance but not atrogin-1 abundance or AMP-activated protein kinase-α phosphorylation. Leu supplementation to LPS-treated pigs reduced the LC3-II-to-LC3 ratio, MuRF-1 abundance, and AMP-activated protein kinase-α phosphorylation compared with LPS alone. In conclusion, parenteral Leu supplementation attenuates the LPS-induced reduction in PS by stimulating mammalian target of rapamycin complex 1-dependent translation and may reduce PD by attenuating autophagy-lysosome and MuRF-1 signaling in neonatal skeletal muscle.


Asunto(s)
Endotoxemia/metabolismo , Leucina/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Femenino , Lipopolisacáridos/farmacología , Masculino , Músculo Esquelético/efectos de los fármacos , Miocardio/metabolismo , Transducción de Señal/efectos de los fármacos , Sus scrofa , Porcinos
14.
Pediatr Res ; 80(5): 744-752, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27508897

RESUMEN

BACKGROUND: Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. METHODS: Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to induce a chronic infection for 5 d. On d 5, pancreatic-substrate clamps were performed to attain fasting or fed insulin levels but to maintain glucose and amino acids in the fasting range. Total fractional protein synthesis rates (Ks), translational control mechanisms, and energy sensing and degradation signal activation were measured in longissimus dorsi muscle. RESULTS: In fasting conditions, CLP reduced Ks and sirtuin 1 (SIRT1) and increased AMP-activated protein kinase α (AMPKα) activation and muscle RING-finger protein-1 (MuRF1). Insulin treatment increased Ks and mitochondrial protein synthesis, enhanced translation activation, and reduced SIRT1 in CON. In contrast, in CLP, insulin treatment increased Ks, protein kinase B (PKB) and Forkhead box O1 phosphorylation, antagonized AMPK activation, and decreased peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), MuRF1, and SIRT1. CONCLUSION: Energy and substrate sensing in skeletal muscle by the PKB-AMPK-SIRT1-PGC-1α axis is impacted by chronic infection in neonatal pigs and can be modulated by insulin.


Asunto(s)
Insulina/metabolismo , Músculo Esquelético/metabolismo , Peritonitis/fisiopatología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Animales Recién Nacidos , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Resistencia a la Insulina , Leucina/metabolismo , Peritonitis/metabolismo , Fosforilación , Transducción de Señal , Sirtuina 1/metabolismo , Sus scrofa , Porcinos , Factores de Transcripción/metabolismo
15.
Am J Physiol Endocrinol Metab ; 310(11): E1072-84, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27143558

RESUMEN

Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) µmol HMB·kg body wt(-1)·day(-1) Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation.


Asunto(s)
Suplementos Dietéticos , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Valeratos/administración & dosificación , Administración Oral , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta a Droga , Nutrición Enteral , Femenino , Masculino , Músculo Esquelético/citología , Biosíntesis de Proteínas/fisiología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Porcinos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
16.
Pediatr Res ; 80(3): 448-51, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27064245

RESUMEN

BACKGROUND: Sepsis induces loss of skeletal muscle mass by activating the ubiquitin proteasome (UPS) and autophagy systems. Although muscle protein synthesis in healthy neonatal piglets is responsive to amino acids (AA) stimulation, it is not known if AA can prevent the activation of muscle protein degradation induced by sepsis. We hypothesize that AA attenuate the sepsis-induced activation of UPS and autophagy in neonates. METHODS: Newborn pigs were infused for 8 h with liposaccharide (LPS) (0 and 10 µg·kg(-1)·h(-1)), while circulating glucose and insulin were maintained at fasting levels; circulating AA were clamped at fasting or fed levels. Markers of protein degradation and AA transporters in longissimus dorsi (LD) were examined. RESULTS: Fasting AA increased muscle microtubule-associated protein light 1 chain 3 II (LC3-II) abundance in LPS compared to control, while fed AA levels decreased LC3-II abundance in both LPS and controls. There was no effect of AA supplementation on activated protein kinase (AMP), forkhead box O1 and O4 phosphorylation, nor on sodium-coupled neutral AA transporter 2 and light chain AA transporter 1, muscle RING-finger protein-1 and muscle Atrophy F-Box/Atrogin-1 abundance. CONCLUSION: These findings suggest that supplementation of AA antagonize autophagy signal activation in skeletal muscle of neonates during endotoxemia.


Asunto(s)
Aminoácidos/sangre , Autofagia/efectos de los fármacos , Endotoxemia/fisiopatología , Insulina/sangre , Músculo Esquelético/patología , Aminoácidos de Cadena Ramificada/sangre , Animales , Animales Recién Nacidos , Glucemia/análisis , Nitrógeno de la Urea Sanguínea , Endotoxemia/sangre , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Sepsis/fisiopatología , Sus scrofa , Porcinos , Temperatura
17.
Am J Physiol Endocrinol Metab ; 310(8): E699-E713, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884386

RESUMEN

Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 µmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.


Asunto(s)
Leucina/farmacología , Proteínas Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Alanina/farmacología , Sistema de Transporte de Aminoácidos A/efectos de los fármacos , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Animales Recién Nacidos , Músculos de la Espalda , Suplementos Dietéticos , Nutrición Enteral , Infusiones Parenterales , Leucina/administración & dosificación , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Ribosómicas/efectos de los fármacos , Proteínas Ribosómicas/genética , Sus scrofa , Porcinos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
18.
Amino Acids ; 48(1): 257-267, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26334346

RESUMEN

Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P < 0.001), whereas insulin, isoleucine and valine were lower in RL and R compared to CON (P < 0.001). Compared to RL and R, the CON diet increased (P < 0.01) body weight, protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Leucina/metabolismo , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas , Porcinos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Metabolismo Energético , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Femenino , Insulina/metabolismo , Masculino , Proteínas Musculares/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Fosforilación , Porcinos/genética , Porcinos/crecimiento & desarrollo
19.
Am J Physiol Endocrinol Metab ; 309(6): E601-10, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26374843

RESUMEN

Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. Neonatal pigs (n = 14-16/diet, 5 days old, 1.8 ± 0.3 kg) were fed by gastric catheter a whey-based milk replacement diet with either a high protein (HP) or restricted protein (RP) content or RP supplemented with leucine to the same level as in the HP diet (RPL). Pigs were fed 40 ml·kg body wt(-1)·meal(-1) every 4 h for 21 days. Feeding the HP diet resulted in greater total body weight and lean body mass compared with RP-fed pigs (P < 0.05). Masses of the longissimus dorsi muscle, heart, and kidneys were greater in the HP- than RP-fed pigs (P < 0.05). Body weight, lean body mass, and masses of the longissimus dorsi, heart, and kidneys in pigs fed the RPL diet were intermediate to RP- and HP-fed pigs. Protein synthesis and mTOR signaling were increased in all muscles with feeding (P < 0.05); leucine supplementation increased mTOR signaling and protein synthesis rate in the longissimus dorsi (P < 0.05). There was no effect of diet on indices of protein degradation signaling in any tissue (P > 0.05). Thus, when protein intake is chronically restricted, the capacity for leucine supplementation to enhance muscle protein accretion in neonatal pigs that are meal-fed milk protein-based diets is limited.


Asunto(s)
Peso Corporal/efectos de los fármacos , Dieta con Restricción de Proteínas , Corazón/efectos de los fármacos , Riñón/efectos de los fármacos , Leucina/farmacología , Músculo Esquelético/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Animales Recién Nacidos , Suplementos Dietéticos , Ingestión de Energía , Corazón/crecimiento & desarrollo , Riñón/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Tamaño de los Órganos/efectos de los fármacos , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Sus scrofa , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
20.
Am J Physiol Endocrinol Metab ; 306(1): E91-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24192287

RESUMEN

Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 µmol·kg body wt(-1)·h(-1) for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation.


Asunto(s)
Animales Recién Nacidos/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Sus scrofa/metabolismo , Valeratos/administración & dosificación , Animales , Autofagia/efectos de los fármacos , Leucina/metabolismo , Músculo Esquelético/química , Factores de Iniciación de Péptidos/análisis , Factores de Iniciación de Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Valeratos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...