Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Oleo Sci ; 73(5): 787-799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692900

RESUMEN

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Asunto(s)
Antibacterianos , Bacillus subtilis , Hemiterpenos , Simulación del Acoplamiento Molecular , Aceites Volátiles , Ácidos Pentanoicos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/metabolismo , Girasa de ADN/metabolismo , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas
2.
J Agric Food Chem ; 63(35): 7819-29, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26264830

RESUMEN

Recently, Brassica napus has become a very important crop for plant oil production. Flavonols, an uncolored flavonoid subclass, have a high antioxidative effect and are known to have antiproliferative, antiangiogenic, and neuropharmacological properties. In B. napus, some flavonoid structural genes have been identified, such as, BnF3H-1, BnCHS, and BnC4H-1. However, no studies on FLS genes in B. napus have been conducted. Thus, in this study, we cloned and characterized the function of BnFLS gene B. napus. By overexpression of the BnFLS gene, flavonol (kaempferol and quercetin) levels were recovered in the Arabidopsis atfls1-ko mutant. In addition, we found that the higher endogenous flavonol levels of BnFLS-ox in vitro shoots correlated with slightly higher ROS scavenging activities. Thus, our results indicate that the BnFLS gene encodes for a BnFLS enzyme that can be manipulated to specifically increase flavonol accumulation in oilseed plants and other species such as Arabidopsis.


Asunto(s)
Brassica napus/enzimología , Flavonoles/biosíntesis , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Oxidorreductasas/genética , Proteínas de Plantas/genética , Alineación de Secuencia
3.
Plant Cell Environ ; 38(3): 559-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25053018

RESUMEN

Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that Arabidopsis AtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Cloruro de Sodio/farmacología , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Genes Reporteros , Germinación/efectos de los fármacos , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Semillas/genética , Semillas/fisiología , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética
4.
Plant Cell Rep ; 32(10): 1625-36, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23820978

RESUMEN

KEY MESSAGE: Our results showed the histone deacetylase inhibitors (HDIs) control root development in Arabidopsis via regulation of PIN1 degradation. Epigenetic regulation plays a crucial role in the expression of many genes in response to exogenous or endogenous signals in plants as well as other organisms. One of epigenetic mechanisms is modifications of histone, such as acetylation and deacetylation, are catalyzed by histone acetyltransferase (HAT) and histone deacetylase (HDAC), respectively. The Arabidopsis HDACs, HDA6, and HDA19, were reported to function in physiological processes, including embryo development, abiotic stress response, and flowering. In this study, we demonstrated that histone deacetylase inhibitors (HDIs) inhibit primary root elongation and lateral root emergence. In response to HDIs treatment, the PIN1 protein was almost abolished in the root tip. However, the PIN1 gene did not show decreased expression in the presence of HDIs, whereas IAA genes exhibited increases in transcript levels. In contrast, we observed a stable level of gene expression of stress markers (KIN1 and COR15A) and a cell division marker (CYCB1). Taken together, these results suggest that epigenetic regulation may control auxin-mediated root development through the 26S proteasome-mediated degradation of PIN1 protein.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigénesis Genética , Inhibidores de Histona Desacetilasas/farmacología , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/metabolismo
5.
J Exp Bot ; 64(12): 3911-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23888064

RESUMEN

Critical responses to developmental or environmental stimuli are mediated by different transcription factors, including members of the ERF, bZIP, MYB, MYC, and WRKY families. Of these, MYB genes play roles in many developmental processes. The overexpression of one MYB gene, MYBH, significantly increased hypocotyl elongation in Arabidopsis thaliana plants grown in the light, and the expression of this gene increased markedly in the dark. The MYBH protein contains a conserved motif, R/KLFGV, which was implicated in transcriptional repression. Interestingly, the gibberellin biosynthesis inhibitor paclobutrazol blocked the increase in hypocotyl elongation in seedlings that overexpressed MYBH. Moreover, the function of MYBH was dependent on phytochrome-interacting factor (PIF) proteins. Taken together, these results suggest that hypocotyl elongation is regulated by a delicate and efficient mechanism in which MYBH expression is triggered by challenging environmental conditions such as darkness, leading to an increase in PIF accumulation and subsequent enhanced auxin biosynthesis. These results indicate that MYBH is one of the molecular components that regulate hypocotyl elongation in response to darkness.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Oscuridad , Hipocótilo/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Alineación de Secuencia , Factores de Transcripción/metabolismo
6.
Plant Cell Rep ; 32(4): 503-14, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23306631

RESUMEN

KEY MESSAGE: Our results demonstrate that the flavonoids biosynthetic pathway can be effectively manipulated to confer enhanced plant root growth under water-stress conditions. Abscisic acid (ABA) is one of most important phytohormones. It functions in various processes during the plant lifecycle. Previous studies indicate that ABA has a negative effect on root growth and branching. Auxin is another key plant growth regulator that plays an essential role in plant growth and development. In contrast to ABA, auxin is a positive regulator of root growth and development at low concentrations. This study was performed to help understand whether flavonoids can suppress the effect of ABA on lateral root growth. The recessive TRANSPARENT TESTA GLABRA 1 (ttg1) mutant was characterized on ABA and sucrose treatments. It was determined that auxin mobilization could be altered by modifying flavonoids biosynthesis, which resulted in alterations of root architecture in response to ABA treatment. Moreover, transgenic TTG1-overexpression (TTG1-OX) seedlings exhibited enhanced root length and lateral root number compared to wild-type seedlings grown under normal or stress conditions. Genetic manipulation of the flavonoids biosynthetic pathway could therefore be employed successfully for the improvement of plant root systems by overcoming the inhibition of ABA and some abiotic stresses.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Flavonoles/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...