Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 746, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272871

RESUMEN

Telomerase is a ribonucleoprotein (RNP) enzyme that extends telomeric repeats at eukaryotic chromosome ends to counterbalance telomere loss caused by incomplete genome replication. Human telomerase is comprised of two distinct functional lobes tethered by telomerase RNA (hTR): a catalytic core, responsible for DNA extension; and a Hinge and ACA (H/ACA) box RNP, responsible for telomerase biogenesis. H/ACA RNPs also have a general role in pseudouridylation of spliceosomal and ribosomal RNAs, which is critical for the biogenesis of the spliceosome and ribosome. Much of our structural understanding of eukaryotic H/ACA RNPs comes from structures of the human telomerase H/ACA RNP. Here we report a 2.7 Å cryo-electron microscopy structure of the telomerase H/ACA RNP. The significant improvement in resolution over previous 3.3 Å to 8.2 Å structures allows us to uncover new molecular interactions within the H/ACA RNP. Many disease mutations are mapped to these interaction sites. The structure also reveals unprecedented insights into a region critical for pseudouridylation in canonical H/ACA RNPs. Together, our work advances understanding of telomerase-related disease mutations and the mechanism of pseudouridylation by eukaryotic H/ACA RNPs.


Asunto(s)
Ribonucleoproteínas , Telomerasa , Humanos , Ribonucleoproteínas/genética , Telomerasa/genética , Microscopía por Crioelectrón , Ribonucleoproteínas Nucleolares Pequeñas/genética , ARN/genética , ARN Ribosómico
2.
Sci Adv ; 9(34): eadi4148, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624885

RESUMEN

Shelterin and nucleosomes are the key players that organize mammalian chromosome ends into the protective telomere caps. However, how they interact with each other at telomeres remains unknown. We report cryo-electron microscopy structures of a human telomeric nucleosome both unbound and bound to the shelterin factor TRF1. Our structures reveal that TRF1 binds unwrapped nucleosomal DNA ends by engaging both the nucleosomal DNA and the histone octamer. Unexpectedly, TRF1 binding shifts the register of the nucleosomal DNA by 1 bp. We discovered that phosphorylation of the TRF1 C terminus and a noncanomical DNA binding surface on TRF1 are critical for its association with telomeric nucleosomes. These insights into shelterin-chromatin interactions have crucial implications for understanding telomeric chromatin organization and other roles of shelterin at telomeres including replication and transcription.


Asunto(s)
Nucleosomas , Telómero , Animales , Humanos , Cromatina , Cromosomas de los Mamíferos , Microscopía por Crioelectrón , Mamíferos , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
3.
Science ; 375(6585): 1173-1176, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35201900

RESUMEN

Telomerase maintains genome stability by extending the 3' telomeric repeats at eukaryotic chromosome ends, thereby counterbalancing progressive loss caused by incomplete genome replication. In mammals, telomerase recruitment to telomeres is mediated by TPP1, which assembles as a heterodimer with POT1. We report structures of DNA-bound telomerase in complex with TPP1 and with TPP1-POT1 at 3.2- and 3.9-angstrom resolution, respectively. Our structures define interactions between telomerase and TPP1-POT1 that are crucial for telomerase recruitment to telomeres. The presence of TPP1-POT1 stabilizes the DNA, revealing an unexpected path by which DNA exits the telomerase active site and a DNA anchor site on telomerase that is important for telomerase processivity. Our findings rationalize extensive prior genetic and biochemical findings and provide a framework for future mechanistic work on telomerase regulation.


Asunto(s)
ADN/química , Complejo Shelterina/química , Telomerasa/química , Proteínas de Unión a Telómeros/química , Telómero/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , ADN/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo
4.
Biochem Soc Trans ; 49(5): 1927-1939, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623385

RESUMEN

Telomerase ribonucleoprotein was discovered over three decades ago as a specialized reverse transcriptase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. Telomerase plays key roles in maintaining genome stability; and its dysfunction and misregulation have been linked to different types of cancers and a spectrum of human genetic disorders. Over the years, a wealth of genetic and biochemical studies of human telomerase have illuminated its numerous fascinating features. Yet, structural studies of human telomerase have lagged behind due to various challenges. Recent technical developments in cryo-electron microscopy have allowed for the first detailed visualization of the human telomerase holoenzyme, revealing unprecedented insights into its active site and assembly. This review summarizes the cumulative work leading to the recent structural advances, as well as highlights how the future structural work will further advance our understanding of this enzyme.


Asunto(s)
Telomerasa/química , Telomerasa/metabolismo , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón/métodos , Disqueratosis Congénita/enzimología , Disqueratosis Congénita/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , Mutación , Telomerasa/genética , Telómero/metabolismo , Homeostasis del Telómero
5.
Nature ; 593(7859): 449-453, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33883742

RESUMEN

Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication1. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease2. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture3, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A-H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.


Asunto(s)
Microscopía por Crioelectrón , ADN/química , ADN/ultraestructura , Telomerasa/química , Telomerasa/ultraestructura , Telómero , Sitios de Unión , Dominio Catalítico , ADN/genética , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Humanos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN/química , ARN/metabolismo , ARN/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Telómero/ultraestructura
6.
Curr Opin Struct Biol ; 55: 185-193, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31202023

RESUMEN

During genome replication, telomerase adds repeats to the ends of chromosomes to balance the loss of telomeric DNA. The regulation of telomerase activity is of medical relevance, as it has been implicated in human diseases such as cancer, as well as in aging. Until recently, structural information on this enzyme that would facilitate its clinical manipulation had been lacking due to telomerase very low abundance in cells. Recent cryo-EM structures of both the human and Tetrahymena thermophila telomerases have provided a picture of both the shared catalytic core of telomerase and its interaction with species-specific factors that play different roles in telomerase RNP assembly and function. We discuss also progress toward an understanding of telomerase RNP biogenesis and telomere recruitment from recent studies.


Asunto(s)
Telomerasa/química , Dominio Catalítico , Humanos , Modelos Moleculares , Tetrahymena thermophila/enzimología
7.
Nature ; 557(7704): 190-195, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695869

RESUMEN

The enzyme telomerase adds telomeric repeats to chromosome ends to balance the loss of telomeres during genome replication. Telomerase regulation has been implicated in cancer, other human diseases, and ageing, but progress towards clinical manipulation of telomerase has been hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme at subnanometre resolution, showing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.


Asunto(s)
Microscopía por Crioelectrón , Telomerasa/metabolismo , Telomerasa/ultraestructura , Dominio Catalítico , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutación , Dominios Proteicos , ARN/química , ARN/metabolismo , ARN/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Especificidad por Sustrato , Telomerasa/química , Telomerasa/genética
8.
Nature ; 549(7672): 414-417, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28902838

RESUMEN

Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.


Asunto(s)
Microscopía por Crioelectrón , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/ultraestructura , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Iniciación de la Transcripción Genética
9.
Elife ; 62017 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-28623663

RESUMEN

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


Asunto(s)
ADN de Hongos/ultraestructura , Proteínas del Complejo de Iniciación de Transcripción Pol1/ultraestructura , ARN Polimerasa I/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/enzimología , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN de Hongos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Unión Proteica , ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Nature ; 530(7590): 298-302, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26829225

RESUMEN

U4/U6.U5 tri-snRNP represents a substantial part of the spliceosome before activation. A cryo-electron microscopy structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at 3.7 Šresolution led to an essentially complete atomic model comprising 30 proteins plus U4/U6 and U5 small nuclear RNAs (snRNAs). The structure reveals striking interweaving interactions of the protein and RNA components, including extended polypeptides penetrating into subunit interfaces. The invariant ACAGAGA sequence of U6 snRNA, which base-pairs with the 5'-splice site during catalytic activation, forms a hairpin stabilized by Dib1 and Prp8 while the adjacent nucleotides interact with the exon binding loop 1 of U5 snRNA. Snu114 harbours GTP, but its putative catalytic histidine is held away from the γ-phosphate by hydrogen bonding to a tyrosine in the amino-terminal domain of Prp8. Mutation of this histidine to alanine has no detectable effect on yeast growth. The structure provides important new insights into the spliceosome activation process leading to the formation of the catalytic centre.


Asunto(s)
Microscopía por Crioelectrón , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Emparejamiento Base , Dominio Catalítico , ADN Helicasas/metabolismo , Exones/genética , Guanosina Trifosfato/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Sitios de Empalme de ARN , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
11.
Curr Opin Struct Biol ; 36: 48-57, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26803803

RESUMEN

The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.


Asunto(s)
Microscopía por Crioelectrón , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura , Empalmosomas/química , Empalmosomas/ultraestructura , Animales , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Schizosaccharomyces/metabolismo
12.
Nature ; 523(7558): 47-52, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26106855

RESUMEN

U4/U6.U5 tri-snRNP is a 1.5-megadalton pre-assembled spliceosomal complex comprising U5 small nuclear RNA (snRNA), extensively base-paired U4/U6 snRNAs and more than 30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a precursor messenger RNA substrate bound to U1 and U2 small nuclear ribonucleoprotein particles (snRNPs), and transforms into a catalytically active spliceosome after extensive compositional and conformational changes triggered by unwinding of the U4 and U6 (U4/U6) snRNAs. Here we use cryo-electron microscopy single-particle reconstruction of Saccharomyces cerevisiae tri-snRNP at 5.9 Å resolution to reveal the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3' stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the amino-terminal domain of Prp8 position U5 snRNA to insert its loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome.


Asunto(s)
Modelos Moleculares , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Saccharomyces cerevisiae/química , Empalmosomas/fisiología , Sitios de Unión , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína , ARN Helicasas/química , ARN Helicasas/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/química
13.
Curr Opin Struct Biol ; 25: 57-66, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24480332

RESUMEN

Spliceosomes are large, dynamic ribonucleoprotein complexes that catalyse the removal of introns from messenger RNA precursors via a two-step splicing reaction. The recent crystal structure of Prp8 has revealed Reverse Transcriptase-like, Linker and Endonuclease-like domains. The intron branch-point cross-link with the Linker domain of Prp8 in active spliceosomes and together with suppressors of 5' and 3' splice site mutations this unambiguously locates the active site cavity. Structural and mechanistic similarities with group II self-splicing introns have encouraged the notion that the spliceosome is at heart a ribozyme, and recently the ligands for two catalytic magnesium ions were identified within U6 snRNA. They position catalytic divalent metal ions in the same way as Domain V of group II intron RNA, suggesting that the spliceosome and group II intron use the same catalytic mechanisms.


Asunto(s)
Empalmosomas/química , Empalmosomas/metabolismo , Dominio Catalítico , Evolución Molecular , Humanos , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
14.
Structure ; 21(6): 910-19, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23727230

RESUMEN

The U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure and mutagenesis data show that the Jab1/MPN domain binds exclusively to the N-terminal helicase cassette. The residues in the Jab1/MPN domain, whose mutations in human Prp8 cause the degenerative eye disease retinitis pigmentosa, are found at or near the interface with Brr2, clarifying its molecular pathology. In the cytoplasm, Prp8 forms a precursor complex with U5 snRNA, seven Smproteins, Snu114, and Aar2, but after nuclear import, Brr2 replaces Aar2 to form mature U5 snRNP. Our structure explains why Aar2 and Brr2 are mutually exclusive and provides important insights into the assembly of U5 snRNP.


Asunto(s)
ARN Helicasas/química , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Empalmosomas , Dominio Catalítico , Mutación , Unión Proteica , Conformación Proteica , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Am Chem Soc ; 133(47): 19205-15, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22007671

RESUMEN

The two-component dengue virus NS2B-NS3 protease (DEN NS2B-NS3pro) is an established drug target, but inhibitor design is hampered by the lack of a crystal structure of the protease in its fully active form. In solution and without inhibitors, the functionally important C-terminal segment of the NS2B cofactor is dissociated from DEN NS3pro ("open state"), necessitating a large structural change to produce the "closed state" thought to underpin activity. We analyzed the fold of DEN NS2B-NS3pro in solution with and without bound inhibitor by nuclear magnetic resonance (NMR) spectroscopy. Multiple paramagnetic lanthanide tags were attached to different sites to generate pseudocontact shifts (PCS). In the face of severe spectral overlap and broadening of many signals by conformational exchange, methods for assignment of (15)N-HSQC cross-peaks included selective mutation, combinatorial isotope labeling, and comparison of experimental PCSs and PCSs back-calculated for a structural model of the closed conformation built by using the structure of the related West Nile virus (WNV) protease as a template. The PCSs show that, in the presence of a positively charged low-molecular weight inhibitor, the enzyme assumes a closed state that is very similar to the closed state previously observed for the WNV protease. Therefore, a model of the protease built on the closed conformation of the WNV protease is a better template for rational drug design than available crystal structures, at least for positively charged inhibitors. To assess the open state, we created a binding site for a Gd(3+) complex and measured paramagnetic relaxation enhancements. The results show that the specific open conformation displayed in the crystal of DEN NS2B-NS3pro is barely populated in solution. The techniques used open an avenue to the fold analysis of proteins that yield poor NMR spectra, as PCSs from multiple sites in combination with model building generate powerful information even from incompletely assigned (15)N-HSQC spectra.


Asunto(s)
Virus del Dengue/enzimología , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitios de Unión/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Peso Molecular , Inhibidores de Proteasas/química , Pliegue de Proteína/efectos de los fármacos , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA