Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
ACS Appl Bio Mater ; 7(5): 3227-3237, 2024 05 20.
Article En | MEDLINE | ID: mdl-38627897

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide Fe3O4 NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-Fe3O4 composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately -50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % Fe3O4 to TOCN, 1 T magnet). Furthermore, the influence of Fe3O4 NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin-biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials.


Cellulose , Magnetic Iron Oxide Nanoparticles , Materials Testing , Nanofibers , Particle Size , Nanofibers/chemistry , Cellulose/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Magnetite Nanoparticles/chemistry
2.
ACS Appl Bio Mater ; 6(7): 2725-2737, 2023 07 17.
Article En | MEDLINE | ID: mdl-37341240

The conventional pectin delivery systems in the colon are often impaired by a slow release rate. Nanostructured particles, especially porous ones, have gained popularity as drug delivery systems owing to their high mass transfer efficiency. In this research, porous pectin particles were synthesized as drug carriers (using indomethacin as a model drug) via template-assisted spray drying. Specific surface areas of the porous pectin particles have been improved by up to 203 m2 g-1 compared with nonporous particles (1 m2 g-1). The porous structure shortened the diffusion path and improved the release rate of drug molecules. Additionally, the predominant drug release mechanism from porous pectin particles is Fickian diffusion, which is different from the combination of erosion and diffusion mechanism observed for nonporous particles. As a result, these porous drug-loaded pectin particles demonstrated rapid drug release rates of up to three times faster than nonporous particles. Control of the release rate could be achieved by changing the porous structure of the particles. This strategy is an efficient means to synthesize porous particles allowing rapid drug release into the colonic target.


Indomethacin , Pectins , Indomethacin/chemistry , Pectins/chemistry , Porosity , Drug Delivery Systems , Colon
3.
J Colloid Interface Sci ; 630(Pt B): 134-143, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36327717

Porous particles composed of 2,2,6,6-tetramethylpiperidinyl-1-oxyl-oxidized cellulose nanofiber (TOCN) as building block, i.e., porous TOCN particles, are attracting attention due to their environmental friendliness, superior properties, such as easy handling, large surface area, and high adsorption capacity. However, the instability of TOCNs in aqueous environments limits their applications. An effective solution to improve water resistance of TOCN particles is to reduce the hydrophilicity of TOCNs by forming chemical bonds with a cross-linker. In this study, Carbodilite, a common, easy-to-use, commercially available cross-linker with carbodiimide groups, was used to investigate a chemical cross-linking strategy for porous TOCN particles prepared by spray drying. The water resistance of cross-linked TOCN particles was evaluated through morphological observation by SEM images. The presence of polycarbodiimide significantly increased water resistance of cross-linked TOCN particles up to 24 h. This study demonstrates the trade-off between water resistance and adsorption efficiency according to cross-linker concentrations. These data are useful for interface science of TOCNs in liquids, assisting in controlling specific properties of porous TOCN particles for particular applications in adsorption and separation.


Cellulose, Oxidized , Nanofibers , Nanofibers/chemistry , Cellulose/chemistry , Adsorption , Porosity , Water , Spray Drying , Cyclic N-Oxides/chemistry , Cellulose, Oxidized/chemistry
4.
ACS Appl Mater Interfaces ; 14(12): 14435-14446, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-35302745

There has been much interest in developing protein adsorbents using nanostructured particles, which can be engineered porous materials with fine control of the surface and pore structures. A significant challenge in designing porous adsorbents is the high percentage of available binding sites in the pores owing to their large surface areas and interconnected pore networks. In this study, continuing the idea of using porous materials derived from natural polymers toward the goal of sustainable development, porous pectin particles are reported. The template-assisted spray drying method using calcium carbonate (CaCO3) as a template for pore formation was applied to prepare porous pectin particles. The specific surface area was controlled from 177.0 to 222.3 m2 g-1 by adjusting the CaCO3 concentration. In addition, the effects of a macroporous structure, the specific surface area, and an interconnected pore network on the protein (lysozyme) adsorption capacity and adsorption mechanism were investigated. All porous pectin particles performed rapid adsorption (∼65% total capacity within 5 min) and high adsorption capacity, increasing from 1543 to the highest value of 2621 mg g-1. The results are attributed to the high percentage of available binding sites located in the macropores owing to their large surface areas and interconnected pore networks. The macroporous particles obtained in this study showed a higher adsorption capacity (2621 mg g-1) for lysozyme than other adsorbents. Moreover, the rapid uptake and high performance of this material show its potential as an advanced adsorbent for various macromolecules in the food and pharmaceutical fields.


Pectins , Proteins , Adsorption , Polymers , Porosity
5.
Langmuir ; 37(14): 4256-4266, 2021 04 13.
Article En | MEDLINE | ID: mdl-33780254

Many types of porous particles containing inorganic and organic substances, such as carbon, metals, metal oxides, inorganic-organic hybrids, and polymers, have been developed. However, natural polymer-derived particles are relatively rare. To our knowledge, this report describes the first synthetic method for obtaining meso-/macroporous particles made from pectin, which is a natural polymer with a wide range of biological activities suitable for active substance support applications. These porous particles were prepared using a template-assisted spray-drying method, followed by a chemical etching process. An organic template [i.e., poly(methyl methacrylate) (PMMA)] or an inorganic template [i.e., calcium carbonate (CaCO3)] was used to evaluate the resulting formation of macroporous structures in the pectin particles. Furthermore, the concentration of the templates in the precursor solution was varied to better understand the mechanism of porous pectin particle formation. The results showed that the final porous particles maintained the characteristic properties of pectin. The differences between the two templates resulted in two distinct types of porous particles that differed in their particle morphologies (i.e., spherical or wrinkled), particle sizes (ranging from 3 to 8 µm), pore sizes (ranging from 80 to 350 nm), and pore volume (ranging from 0.024 to 1.40 cm3 g-1). Especially, the porous pectin particles using the CaCO3 template have a significantly high specific surface area of 171.2 m2 g-1, which is 114 times higher than that of nonporous pectin particles. These data demonstrated the potential for using PMMA and CaCO3 templates to control and design desired porous materials.

6.
J Colloid Interface Sci ; 571: 378-386, 2020 Jul 01.
Article En | MEDLINE | ID: mdl-32220680

Hollow silica particles are desirable for numerous applications, however, designing hollow silica materials with varying hollow structures and shapes remains a significant challenge. Herein, a strategy for the precisely controlled synthesis of hexagonal-shaped hollow silica plate (HHSP) particles was successfully prepared via a sol-gel method at room temperature, using tetraethyl orthosilicate (TEOS) as a silica precursor and zinc oxide (ZnO) particles as a colloidal template. The effect of reaction time was carried out to control the structure and morphology of HHSP particles, and the thickness of silica shell can be tuned in the range from 12.2 to 43.2 nm by adjusting the TEOS/ZnO molar ratios. In addition, the polymer/HHSP composite thin films were prepared using poly(methyl methacrylate) (PMMA) matrix and surface modified HHSP particles by grafting silane coupling agents. High transmittance values were observed (>95%) for the composite thin films (5 µm in thickness, 0.1-1.0 wt% HHSP) in the ultraviolet and visible regions. Furthermore, the refractive index of HHSP particles was observed to be 1.28, which is significantly lower than dense silica (n = 1.46). These results suggest that the approach adopted herein will open up opportunities for the development of a new generation of film materials with a low refractive index.

...