Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Antibiotics (Basel) ; 10(5)2021 May 17.
Article En | MEDLINE | ID: mdl-34067716

Our aims are to assess various colistin dosing regimens against Pseudomonas aeruginosa (P. aeruginosa) infection in critically ill patients and to propose an appropriate regimen based on microbiological data. A Monte Carlo simulation was performed using the published colistin's pharmacokinetic parameters of critically ill patients, the published pharmacodynamic target from a mouse thigh infection model, and the minimum inhibitory concentration (MIC) results from a Vietnamese hospital. The probability of target attainment (PTA) of 80% and cumulative fraction of response (CFR) of 90% were used to evaluate the efficacy of each regimen. Of 121 P. aeruginosa laboratory datasets, the carbapenem-resistant P. aeruginosa (CRPA) and the colistin-resistant P. aeruginosa rates were 29.8% and 0.8%, respectively. MIC50,90 were both 0.5 mg/L. The simulated results showed that at MIC of 2 mg/L, most regimens could not reach the PTA target, particularly in patients with normal renal function (Creatinine clearance (CrCl) ≥ 80 mL/min). At MIC of 0.5 mg/L and 1 mg/L, current recommendations still worked well. On the basis of these results, aside from lung infection, our study recommends three regimens against P. aeruginosa infection at MIC of 0.5 mg/L, 1 mg/L, and 2 mg/L. In conclusion, higher total daily doses and fractionated colistin dosing regimens could be the strategy for difficult-to-acquire PTA cases, while a less aggressive dose might be appropriate for empirical treatment in settings with low MIC50/90.

2.
Nanotechnology ; 32(16): 16LT01, 2021 Apr 16.
Article En | MEDLINE | ID: mdl-33455951

In this study, oxygenated graphene nanosheets (OGNs) were successfully synthesized using a simple electrochemical exfoliation approach and applied to remove methylene blue (MB) in an aqueous solution. The surface morphology and structure of the OGNs were characterized by scanning electron microscopy, transmission electron microscopy, Raman, and x-ray photoelectron spectroscopy. The adsorption performance of OGNs towards aqueous MB was tested by batch experiments. Results showed that a large number of functional groups in OGNs enhanced the removal of MB from the aqueous solution due to the electrostatic interactions between the electrochemically oxygenated groups (e.g. C-OH, C-O, and C=O) and dye molecules. Using Langmuir adsorption isotherm, the maximum MB adsorption capacity (q max) was determined as high as 476.19 mg g-1. These results suggested that the as-prepared OGNs is an effective and promising adsorbent for removing MB, which could be studied extensively for color removal in wastewater treatment.

...