Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
PLoS One ; 19(3): e0300969, 2024.
Article En | MEDLINE | ID: mdl-38551952

This study employed novel extraction methods with natural deep eutectic solvents (NADES) to extract bioactive compounds and proteins from Bacopa monnieri leaves. The conditional influence of ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic-assisted extraction (EAE) on the recovery efficiency of phenolics, proteins, flavonoids, and terpenoids was evaluated. The conditions of UAE were 50 mL/g LSR, 600W of ultrasonic power, and 30% water content with 40°C for 1 min to obtain the highest bioactive compounds and protein contents. The conditions of MAE were 40 mL/g LSR, 400W of microwave power with 30% water content for 3 min to reach the highest contents of biological compounds. The conditions of EAE were 30 mL/g of LSR, 20 U/g of enzyme concentration with L-Gly-Na molar ratio at 2:4:1, and 40% water content for 60 min to acquire the highest bioactive compound contents. Scanning electron microscopy (SEM) is employed to analyze the surface of Bacopa monnieri leaves before and after extraction. Comparing seven extraction methods was conducted to find the most favorable ones. The result showed that the UMEAE method was the most effective way to exploit the compounds. The study suggested that UMEAE effectively extracts phenolics, flavonoids, terpenoids, and protein from DBMP.


Bacopa , Plant Extracts , Deep Eutectic Solvents , Solvents , Flavonoids , Water , Phenols , Terpenes
2.
ACS Omega ; 8(42): 39523-39534, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37901568

This study aimed to use oleic acid-based ultrasonic-assisted extraction (UAE) to recover carotenoids from carrot pomace and emulsify the enriched-carotenoid oleic acid using spontaneous and ultrasonic-assisted emulsification. The extraction performance of oleic acid was compared with traditional organic solvents, including hexane, acetone, and ethyl acetate. The one-factor experiments were employed to examine the impact of UAE conditions, including liquid-to-solid ratios, temperature, ultrasonic power, and time, on the extraction yield of carotenoids and to find the conditional ranges for the optimization process. The response surface methodology was employed to optimize the UAE process. The second-order extraction kinetic model was used to find the mechanism of oleic acid-based UAE. After that, the enriched-carotenoid oleic acid obtained at the optimal conditions of UAE was used to fabricate nanoemulsions using spontaneous emulsification (SE), ultrasonic-assisted emulsification (UE), and SE-UE. The effect of SE and UE conditions on the turbidity of nanoemulsion was determined. Then, the physiochemical attributes of the nanoemulsion from SE, UE, and spontaneous ultrasonic-assisted emulsification (SE-UE) were determined using the dynamic light scattering method. The extraction yield of carotenoids from carrot pomace by using sonication was the highest. The adjusted optimal conditions were 39 mL/g of LSR, 50 °C, 12.5 min, and 350 W of ultrasonic power. Under optimal conditions, the carotenoid content attained was approximately 163.43 ± 1.83 µg/g, with the anticipated value (166 µg/g). The particle sizes of nanoemulsion fabricated at the proper conditions of SE, UE, and SE-UE were 31.2 ± 0.83, 33.8 ± 0.52, and 109.7 ± 8.24 nm, respectively. The results showed that SE and UE are suitable methods for fabricating nanoemulsions. The research provided a green approach for extracting and emulsifying carotenoids from carrot pomace.

...