Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960367

RESUMEN

This paper proposes a time- and event-triggered hybrid scheduling for remote state estimation with limited communication resources. A smart sensor observes a physical process and decides whether to send the local state estimate to a remote estimator via a wireless communication channel; the estimator computes the state estimate of the process according to the received data packets and the known scheduling mechanism. Based on the existing optimal time-triggered scheduling, we employ a stochastic event trigger to save precious communication chances and further improve the estimation performance. The minimum mean-squared error (MMSE) state estimate is derived since the Gaussian property is preserved. The estimation performance upper bound and communication rate are analyzed. The main results are illustrated by numerical examples.

2.
Org Lett ; 25(36): 6784-6789, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37672351

RESUMEN

Herein, we present a base-mediated nucleophilic substitution reaction of α-trifluoromethylstyrenes with simple silyl enol ethers, enabling the efficient synthesis of carbonyl-substituted gem-difluoroalkenes. The merit of this protocol is exhibited by its mild reaction conditions, broad substrate scope, and scalable preparation. Notably, this method demonstrates its applicability for late-stage functionalization of structurally complex molecules. Moreover, we illustrate that the resulting products can serve as valuable precursors for the synthesis of diverse medicinally relevant compounds.

4.
Nutrients ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771345

RESUMEN

BACKGROUND: Vitamin D deficiency (VDD) increases the risk for type 2 diabetes mellitus (T2DM), which might be related to insulin resistance (IR). We aimed to explore the association between the triglyceride-glucose (TyG) index, a reliable indicator of IR, and VDD in patients with T2DM. METHODS: There were 1034 participants with T2DM enrolled in the Second Xiangya Hospital of Central South University. The TyG index was calculated as ln (fasting triglyceride (TG, mg/dL) × fasting blood glucose (mg/dL)/2). VDD was defined as 25-hydroxyvitamin D [25(OH)D] level <50 nmol/L. RESULTS: Correlation analysis showed a negative association between the TyG index and 25(OH)D level. After adjustments for clinical and laboratory parameters, it was revealed that when taking the Q1 quartile of TyG index as a reference, an increasing trend of VDD prevalence was presented in the other three groups divided by TyG index quartiles, where the OR (95% CI) was 1.708 (1.132-2.576) for Q2, 2.041 (1.315-3.169) for Q3, and 2.543 (1.520-4.253) for Q4 (all p < 0.05). CONCLUSIONS: Patients with higher TyG index were more likely to have an increased risk of VDD in T2DM population, which may be related to IR.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Deficiencia de Vitamina D , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Glucosa , Triglicéridos , Glucemia/análisis , Vitaminas , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Calcifediol , Factores de Riesgo , Biomarcadores
5.
Aging Dis ; 14(1): 170-183, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36818559

RESUMEN

Vascular calcification and aging often increase morbidity and mortality in patients with diabetes mellitus (DM); however, the underlying mechanisms are still unknown. In the present study, we found that Bcl-2 modifying factor (BMF) and BMF antisense RNA 1 (BMF-AS1) were significantly increased in high glucose-induced calcified and senescent vascular smooth muscle cells (VSMCs) as well as artery tissues from diabetic mice. Inhibition of BMF-AS1 and BMF reduced the calcification and senescence of VSMCs, whereas overexpression of BMF-AS1 and BMF generates the opposite results. Mechanistic analysis showed that BMF-AS1 interacted with BMF directly and up-regulated BMF at both mRNA and protein levels, but BMF did not affect the expression of BMF-AS1. Moreover, knocking down BMF-AS1 and BMF suppressed the calcification and senescence of VSMCs, and BMF knockout (BMF-/-) diabetic mice presented less vascular calcification and aging compared with wild type diabetic mice. In addition, higher coronary artery calcification scores (CACs) and increased plasma BMF concentration were found in patients with DM, and there was a positive correlation between CACs and plasma BMF concentration. Thus, BMF-AS1/BMF plays a key role in promoting high glucose-induced vascular calcification and aging both in vitro and in vivo. BMF-AS1 and BMF represent potential therapeutic targets in diabetic vascular calcification and aging.

6.
J. physiol. biochem ; 79(1): 83–105, feb. 2023. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-215716

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging regulators of vascular diseases, yet their role in diabetic vascular calcification/aging remains poorly understood. In this study, we identified a down-expressed lncRNA SNHG1 in high glucose (HG)-induced vascular smooth muscle cells (HA-VSMCs), which induced excessive autophagy and promoted HA-VSMCs calcification/senescence. Overexpression of SNHG1 alleviated HG-induced HA-VSMCs calcification/senescence. The molecular mechanisms of SNHG1 in HA-VSMCs calcification/senescence were explored by RNA pull-down, RNA immunoprecipitation, RNA stability assay, luciferase reporter assay, immunoprecipitation and Western blot assays. In one mechanism, SNHG1 directly interacted with Bhlhe40 mRNA 3′-untranslated region and increased Bhlhe40 mRNA stability and expression. In another mechanism, SNHG1 enhanced Bhlhe40 protein SUMOylation by serving as a scaffold to facilitate the binding of SUMO E3 ligase PIAS3 and Bhlhe40 protein, resulting in increased nuclear translocation of Bhlhe40 protein. Moreover, Bhlhe40 suppressed the expression of Atg10, which is involved in the process of autophagosome formation. Collectively, the protective effect of SNHG1 on HG-induced HA-VSMCs calcification/senescence is accomplished by stabilizing Bhlhe40 mRNA and promoting the nuclear translocation of Bhlhe40 protein. Our study could provide a novel approach for diabetic vascular calcification/aging. (AU)


Asunto(s)
Humanos , MicroARNs/metabolismo , Calcificación Vascular , ARN Largo no Codificante/metabolismo , Factores de Transcripción Winged-Helix , Proteínas de Homeodominio , Autofagia , Proteínas Inhibidoras de STAT Activados
7.
J Physiol Biochem ; 79(1): 83-105, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36194366

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging regulators of vascular diseases, yet their role in diabetic vascular calcification/aging remains poorly understood. In this study, we identified a down-expressed lncRNA SNHG1 in high glucose (HG)-induced vascular smooth muscle cells (HA-VSMCs), which induced excessive autophagy and promoted HA-VSMCs calcification/senescence. Overexpression of SNHG1 alleviated HG-induced HA-VSMCs calcification/senescence. The molecular mechanisms of SNHG1 in HA-VSMCs calcification/senescence were explored by RNA pull-down, RNA immunoprecipitation, RNA stability assay, luciferase reporter assay, immunoprecipitation and Western blot assays. In one mechanism, SNHG1 directly interacted with Bhlhe40 mRNA 3'-untranslated region and increased Bhlhe40 mRNA stability and expression. In another mechanism, SNHG1 enhanced Bhlhe40 protein SUMOylation by serving as a scaffold to facilitate the binding of SUMO E3 ligase PIAS3 and Bhlhe40 protein, resulting in increased nuclear translocation of Bhlhe40 protein. Moreover, Bhlhe40 suppressed the expression of Atg10, which is involved in the process of autophagosome formation. Collectively, the protective effect of SNHG1 on HG-induced HA-VSMCs calcification/senescence is accomplished by stabilizing Bhlhe40 mRNA and promoting the nuclear translocation of Bhlhe40 protein. Our study could provide a novel approach for diabetic vascular calcification/aging.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , MicroARNs , ARN Largo no Codificante , Calcificación Vascular , Humanos , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/farmacología , Glucosa/metabolismo , Proteínas de Homeodominio , MicroARNs/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/farmacología , ARN Largo no Codificante/metabolismo
8.
Aging Med (Milton) ; 6(4): 379-385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38239714

RESUMEN

Objective: To investigate the relationship between icariin and the osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and the signal pathway involved. Methods: We applied a universally accepted calcification model of VSMCs induced by ß glycerophosphate. Then the VSMCs calcification was observed by treatment with icariin and/or inhibitors of estrogen receptors (ERs) and p38-mitogen-activated protein kinase (MAPK) signaling. Results: Icariin inhibited osteoblastic differentiation and mineralization of VSMCs due to decreased ALP activity and Runx2 expression. Further study demonstrated that icariin exerted this suppression effect through activating p38-MAPK but not extracellular-regulated kinase, JNK or Akt. An inhibitor of p38-MAPK partially reversed the inhibitory effects of icariin on osteoblastic differentiation. Interestingly, treatment of VSMCs with an ER antagonist ICI182780 and a selective ERα receptor antagonist PPT attenuated icariin-mediated inhibition effect of VSMCs calcification, associated with suppression of p38-MAPK phosphorylation. Conclusions: Icariin inhibited the osteoblastic differentiation of VSMCs, and that the inhibitory effects were mediated by p38-MAPK pathways through ERα.

9.
Materials (Basel) ; 15(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744340

RESUMEN

Tert-butyl peroxy-3,5,5-trimethylhexanoate (TBPTMH), a liquid ester organic peroxide, is commonly used as an initiator for polymerization reactions. During the production process, TBPTMH may be exposed to acids and alkali, which may have different effects on its thermal hazard, so it is necessary to carry out a study on the thermal hazard of TBPTMH mixed with acids and alkali. In this paper, the effects of H2SO4 and NaOH on the thermal decomposition of TBPTMH were investigated by differential scanning calorimetry (DSC) and adiabatic calorimetry (Phi-TEC II). The "kinetic triple factors" were calculated by thermodynamic analysis. The results show that the three Ea are 132.49, 116.36, and 118.24 kJ/mol, respectively; thus, the addition of H2SO4 and NaOH increased the thermal hazard of TBPTMH. In addition, the characteristic parameters (time to maximum rate under adiabatic conditions, self-accelerated decomposition temperature) of its thermal decomposition were determined, and the control temperature (45, 40, and 40 °C) of TBPTMH under the action of acid-alkali were further received. This work is expected to provide some guidance for the safe storage, handling, production, and transportation of TBPTMH in the process industry.

10.
Org Lett ; 24(25): 4609-4614, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35726904

RESUMEN

Bicyclo[1.1.1]pentanes (BCPs) are important bioisosteres of aryl, tert-butyl groups, and internal alkynes that can impact key physicochemical properties on drug candidates. Herein, we describe a novel and efficient reaction to synthesize alkyl-alkynyl-substituted BCP derivatives by synergistic photoredox and copper catalysis at room temperature. The mild reaction conditions, simple protocol, broad functional group tolerance, and high efficiency of this procedure make it a valuable strategy for accessing alkynyl-substituted BCPs.

11.
Front Mol Neurosci ; 15: 844193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359573

RESUMEN

Aging-related neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.

12.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209146

RESUMEN

Ionic liquids (ILs) have a wide range of applications, owing to their negligible vapor pressure, high electrical conductivity, and low melting point. However, the thermal hazards of ILs and their mixtures are also non-negligible. In this study, the thermal hazards of various binary imidazolium ionic liquids (BIIL) mixtures were investigated. The effects of parent salt components and molar ratios on the thermal decomposition temperature (Td) and flashpoint temperature (Tf) are investigated. It is found that both Td and Tf increase as the proportion of highly thermally stable components in BIIL mixtures increases. Furthermore, the decomposition process of BIIL mixtures can be divided into two stages. For most molar ratios, the Tf of the BIIL mixtures is in the first stage of thermal decomposition. When the proportion of highly thermally stable components is relatively high, Tf is in the second stage of thermal decomposition. The flammability is attributed to the produced combustible gases during the thermal decomposition process. This work would be reasonably expected to provide some guidance for the safety design and application of IL mixtures for engineering.

13.
Aging Dis ; 12(8): 1948-1963, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34881079

RESUMEN

High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.

14.
Signal Transduct Target Ther ; 6(1): 383, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34753929

RESUMEN

Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.


Asunto(s)
Exosomas/genética , MicroARNs/genética , ARN Circular/genética , ARN Largo no Codificante/genética , Enfermedades Autoinmunes/genética , Enfermedades Cardiovasculares/genética , Enfermedades Transmisibles/genética , Humanos , Enfermedades Metabólicas/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética
15.
Front Cardiovasc Med ; 8: 733985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692785

RESUMEN

Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.

16.
Aging Dis ; 12(5): 1323-1336, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34341711

RESUMEN

Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.

17.
Aging Med (Milton) ; 3(3): 178-187, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33103038

RESUMEN

OBJECTIVE: Cardiovascular diseases and vascular aging are common in patients with diabetes. High glucose is a major cause of vascular aging and cardiovascular diseases. Premature senescence of vascular smooth muscle cells (VSMCs) is one of the main contributors to vascular aging. Adiponectin has been demonstrated to have an anti-aging effect. The present study explored the mechanisms by which adiponectin protects VSMCs against high-glucose-induced senescence. METHODS: Senescence-associated ß-galactosidase (SA-ß-gal) staining was used to detect senescence cells. Western blot was used for measuring protein levels. Flow cytometry was carried out to detect the cell cycle and telomeric repeat amplification protocol (TRAP)-polymerase chain reaction (PCR) silver staining was selected to measure the telomerase activity. RESULTS: Premature senescence of VSMCs was induced by high glucose (30 mM) in a time-dependent manner, which was verified by an increased number of senescence cells, p21 and p53 expression, as well as the decreased proliferation index. High glucose reduced telomerase activity of VSMCs via inhibition of the AMPK/TSC2/mTOR/S6K1 pathway and activation of the PI3K/Akt/mTOR/S6K1 pathway, while adiponectin treatment significantly increased telomerase activity of VSMCs through activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling. CONCLUSION: Adiponectin attenuated the high-glucose-induced premature senescence of VSMCs via increasing telomerase activity of VSMCs, which was achieved by activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling.

18.
Ageing Res Rev ; 64: 101176, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32971257

RESUMEN

The aging of the vasculature plays a crucial role in the pathological progression of various vascular aging-related diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are essential parts in the inner and medial layers of vessel wall, respectively, the structural and functional alterations of ECs and VSMCs are the major causes of vascular aging. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein which exerts a regulatory role in the intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that MFG-E8 is a novel and outstanding modulator for vascular aging via targeting at ECs and VSMCs. In this review, we will summarise the cumulative roles and mechanisms of MFG-E8 in vascular aging and vascular aging-related diseases with special emphasis on the functions of ECs and VSMCs. In addition, we also aim to focus on the promising diagnostic function as a biomarker and the potential therapeutic application of MFG-E8 in vascular aging and the clinical evaluation of vascular aging-related diseases.


Asunto(s)
Células Endoteliales , Factor VIII , Envejecimiento , Antígenos de Superficie , Glucolípidos , Glicoproteínas , Humanos , Gotas Lipídicas , Proteínas de la Leche
19.
Ann N Y Acad Sci ; 1474(1): 61-72, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32483833

RESUMEN

Long noncoding RNAs (lncRNAs) have been investigated as novel regulatory molecules involved in diverse biological processes. Our previous study demonstrated that lncRNA-ES3 is associated with the high glucose-induced calcification/senescence of human aortic vascular smooth muscle cells (HA-VSMCs). However, the mechanism of lncRNA-ES3 in vascular calcification/aging remained largely unknown. Here, we report that the expression of basic helix-loop-helix family member e40 (Bhlhe40) was decreased significantly in HA-VSMCs treated with high glucose, whereas the expression of basic leucine zipper transcription factor (BATF) was increased. Overexpression of Bhlhe40 and inhibition of BATF alleviated calcification/senescence of HA-VSMCs, as confirmed by Alizarin Red S staining and the presence of senescence-associated ß-galactosidase-positive cells. Moreover, we identified that Bhlhe40 regulates lncRNA-ES3 in HA-VSMCs by binding to the promoter region of the lncRNA-ES3 gene (LINC00458). Upregulation or inhibition of lncRNA-ES3 expression significantly promoted or reduced calcification/senescence of HA-VSMCs, respectively. Additionally, we identified that lncRNA-ES3 functions in this process by suppressing the expression of miR-95-5p, miR-6776-5p, miR-3620-5p, and miR-4747-5p. The results demonstrate that lncRNA-ES3 triggers gene silencing of multiple miRNAs by binding to Bhlhe40, leading to calcification/senescence of VSMCs. Our findings suggest that pharmacological interventions targeting lncRNA-ES3 may be therapeutically beneficial in ameliorating vascular calcification/aging.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Silenciador del Gen/fisiología , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Músculo Liso Vascular/patología , ARN Largo no Codificante/genética , Calcificación Vascular/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Línea Celular , Senescencia Celular , Glucosa/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Calcificación Vascular/patología , beta-Galactosidasa/metabolismo
20.
Aging Dis ; 11(1): 164-178, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32010490

RESUMEN

Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...