Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biomater Sci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828621

RESUMEN

Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.

2.
Food Chem ; 450: 139287, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640541

RESUMEN

The effects of ultrasonic pretreatment on the drying characteristics and microstructure of strawberry slices were investigated. The rehydration characteristics of freeze-dried products, which were pre-frozen at -20 °C and - 80 °C were explored, with a focus on water mobility and distribution. The ultrasonic pretreatment significantly increased the water mobility of the strawberry slices, resulting in a reduction in their water content. However, the application of ultrasound significantly decreased the rehydration speed, indicating a lower moisture absorption capacity in the pretreated sample. The micrographs revealed that the structure of the tissue was more uniform after ultrasonic treatment, and water loss was accelerated. In addition, the contact angle measurements showed that the samples were more hydrophobic after ultrasonic treatment, and the eutectic temperature and fold point of the samples increased. Therefore, this study found that ultrasonic-assisted freeze vacuum drying technology effectively reduces hygroscopicity, improves product storage, and represents a potential method for dried production.


Asunto(s)
Fragaria , Liofilización , Frutas , Agua , Fragaria/química , Agua/química , Frutas/química , Ultrasonido , Desecación/métodos , Desecación/instrumentación , Interacciones Hidrofóbicas e Hidrofílicas
3.
Discov Oncol ; 15(1): 57, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430385

RESUMEN

BACKGROUND: HPV-positive head and neck squamous cell carcinoma (HNSCC) exhibits different characteristics from HPV-negative tumors in terms of tumor development, clinical features, treatment response, and prognosis. Layilin (LAYN), which contains homology with C-type lectins, plays a critical role in tumorigenesis and cancer progression. However, the prognostic value of LAYN and the relationship between LAYN and immune infiltration levels in HPV-related HNSCC patients still require a comprehensive understanding. Herein, we aimed to assess the prognostic value of LAYN and to investigate its underlying immunological function in HPV-related HNSCC. METHODS: Through various bioinformatics methods, we analyzed the data from The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to explore the potential underlying oncogenic impression of LAYN, including the relevance of LAYN to survival outcomes, clinicopathological factors, immune cell infiltration, and immune marker sets in HPV-related HNSCC. The expression levels of LAYN and HPV were also verified in HNSCC patient tissues. RESULTS: LAYN was differentially expressed in a variety of tumors. The expression of LAYN in HNSCC was significantly higher than that in adjacent normal tissues (P < 0.0001), and high expression of LAYN was correlated with poor overall survival (OS) in HNSCC patients (Hazard Ratio (HR) = 1.3, P = 0.035). Moreover, LAYN expression level in HPV-positive HNSCC patients was significantly lower than that in HPV-negative patients, with HPV-positive HNSCC patients displaying a trend of favorable prognosis. In addition, the relationship between LAYN expression and immune infiltration levels in HPV-positive HNSCC group was less tightly correlated than that in HPV-negative HNSCC group, and there was a strong relationship between LAYN expression and markers of M2 macrophage (P < 0.001) and exhausted T cells (P < 0.05) in HPV-negative HNSCC. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis suggested that LAYN potentially influenced tumor progression through HPV infection and other cancer-related pathways. CONCLUSIONS: LAYN might contribute to tumorigenesis via its positive correlation with immune checkpoint molecules and tumor-associated macrophages (TAMs). Our study might provide a novel prognostic biomarker and latent therapeutic target for the treatment of HPV-related HNSCC.

4.
Anal Chem ; 96(4): 1597-1605, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235613

RESUMEN

Nanobodies, which represent the next generation of antibodies due to their unique properties, face a significant limitation in their poor physical adsorption on solid supports. In this study, we successfully discovered polystyrene binding nanobodies from a synthetic nanobody library. Notably, bivalent nanobody B2 exhibited high affinity for polystyrene (0.7 nM for ELISA saturation binding analysis and 15.6 nM for isothermal titration calorimetry), displaying a pH-dependent behavior. Remarkably, hydrophobic and electrostatic interactions contribute minimally to the binding process. Molecular modeling provided insights into the interaction between B2 and polystyrene, revealing that the Trp51 residue within the CDR2 loop formed an aromatic H-bond with polystyrene at a distance of 2.74 Å, thus explaining the observed reduction in B2 affinity caused by Trp51 mutations. To explore B2's potential in protein immobilization, we constructed a bispecific nanobody by fusing B2 to an anticarcinoembryonic antigen nanobody 11C12, which cannot be immobilized on polystyrene through passive adsorption. Remarkably, the fusion construct achieved effective immobilization on polystyrene within 5 min by passing the need for periplasmic protein purification despite its low expression level. Moreover, the fusion construct demonstrated excellent linearity in the chemiluminescent enzyme immunoassay. For the first time, this study reports a simplified and seamless platform for the oriented immobilization of nanobody. Importantly, the entire process eliminated the need for protein purification, enabling efficient and rapid immobilization of fusion proteins directly from crude cell extracts, even when the expression level was low. Our developed process dramatically reduced the processing time from 2.5 days to just 5 min.


Asunto(s)
Anticuerpos de Dominio Único , Poliestirenos , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática , Anticuerpos
5.
J Cancer ; 14(18): 3444-3456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021148

RESUMEN

Breast cancer has the characteristics of high metastasis and recurrence and ranks first in incidence and mortality among female malignant tumors. Shc SH2-domain binding protein 1 (SHCBP1) is an important protein in intracellular signal transduction and cell division, but the role of SHCBP1 in breast cancers remains elusive. Here, we found that SHCBP1 deficiency inhibited the proliferation of breast cancer cells. Mechanistically, SHCPB1 significantly downregulates the mRNA level of CXCL2, which in turn activates the AKT and ERK signaling, while inactivates the p21 and p27 signaling. In addition, overexpression of SHCPB1 downregulates the protein levels of p21 and p27, which could be completely reversed by restoration of CXCL2 expression. Moreover, we analyzed the expression of both SHCPB1 and CXCL2, and found that SHCPB1 is highly expressed in breast cancer cells or tissues from breast cancer patients compared to normal breast cells or adjacent normal tissues, while CXCL2 is lowly expressed in breast cancer cells or tissues. Collectively, our study reveals that SHCBP1 plays an oncogenic role in breast cancer tumorigenesis partially through inhibiting the inflammatory response and ultimately activating the proliferation of breast cancers.

6.
Anal Chim Acta ; 1279: 341840, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827654

RESUMEN

BACKGROUND: Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM-5) is a well-characterized biomarker for the clinical diagnosis of various cancers. Nanobodies, considered the smallest antibody fragments with intact antigen-binding capacity, have gained significant attention in disease diagnosis and therapy. Due to their peculiar properties, nanobodies have become promising alternative diagnostic reagents in immunoassay. However, nanobodies-based immunoassay is still hindered by small molecular size and low antigen capture efficacy. Therefore, there is a pressing need to develop novel nanobody-based immunoassays with superior performance. RESULTS: A novel pentameric nanobodies-based immunoassay (PNIA) was developed with enhanced sensitivity and specificity for CEACAM-5 detection. The binding epitopes of three anti-CEACAM-5 nanobodies (Nb1, Nb2 and Nb3) were analyzed. To enhance the capture and detection efficacy of CEACAM-5 in the immunoassay, we engineered bispecific nanobodies (Nb1-Nb2-rFc) as the capture antibody, and developed the FITC-labeled pentameric nanobodies (Nb3-VT1B) as the detection antibody. The binding affinities of Nb1-Nb2-rFc (1.746 × 10-10) and Nb3-VT1B (1.279 × 10-11) were significantly higher than those of unmodified nanobodies (Nb1-rFc, 4.063 × 10-9; Nb2-rFc, 2.136 × 10-8; Nb3, 3.357 × 10-9). The PNIA showed a linear range of 0.625-160 ng mL-1 with a correlation coefficient R2 of 0.9985, and a limit of detection of 0.52 ng mL-1, which was 24-fold lower than the immunoassay using monomeric nanobody. The PNIA was validated with the spiked human serum. The average recoveries ranged from 91.8% to 102% and the coefficients of variation ranged from 0.026% to 0.082%. SIGNIFICANCE AND NOVELTY: The advantages of nanobodies offer a promising alternative to conventional antibodies in disease diagnosis. The novel PNIA demonstrated superior sensitivity and high specificity for the detection of CEACAM-5 antigen. This bispecific or multivalent nanobody design will provide some new insights into the design of immunoassays for clinical diagnosis.


Asunto(s)
Anticuerpos de Dominio Único , Humanos , Antígeno Carcinoembrionario , Inmunoensayo , Anticuerpos , Sensibilidad y Especificidad , Ensayo de Inmunoadsorción Enzimática
7.
Int J Biol Macromol ; 247: 125773, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37437673

RESUMEN

In this work a bioadhesive was developed based on coacervates composed of recombinant mussel adhesive protein (MAP) and dopamine grafted hyaluronic acid (HA). Dopamine profoundly affected rheological attributes of the coacervates, leading to reduced rigidity, enhanced chain flexibility, more sol-like and fluid character and higher tolerance against structural collapse. The coacervates were rendered flowability, injectability, and adaptability, benefiting convenient delivery and making good contact with the skin to provide firm sealing for wounds of various shape and depth. It is the first time reported that MAP/HA coacervates are inherently antibacterial with 100 % growth inhibition against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. The antibacterial capability was disclosed to be positively related to catechol content. To further enhance the coacervates bioactivity, a small bioactive peptide thymosin was added and was revealed to promote fibroblasts migration. The coacervates hold great potential as practical bioadhesives both from the perspective of rheological properties and biological activities.


Asunto(s)
Dopamina , Ácido Hialurónico , Ácido Hialurónico/química , Dopamina/farmacología , Dopamina/química , Proteínas/química , Antibacterianos/farmacología , Antibacterianos/química
8.
Biomed Mater ; 18(4)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37321227

RESUMEN

This work aimed to establish a simple and feasible method to obtain silk fibroin nanoparticles (SFNPs) with uniform particles size, and then modify the SFNPs with nanobody (Nb) 11C12 targeting the proximal membrane end of carcinoembryonic antigen on the surface of colorectal cancer (CRC) cells. The regenerated silk fibroin (SF) was isolated using ultrafiltration tubes with a 50 kDa molecular weight cut-off, and the retention fraction (named as SF > 50 kDa) was further self-assembled into SFNPs by ethanol induction. Scanning electron microscope (SEM) and high-resolution transmission electron microscop showed that the SFNPs with uniform particles size were formed. Due to electrostatic adsorption and pH responsiveness, SFNPs have been proved to effectively load and release the anticancer drug doxorubicin hydrochloride (DOX) (DOX@SFNPs). Further, targeting molecule Nb 11C12 was used to modify these nanoparticles, constituting the targeted outer layer of the drug delivery system (DOX@SFNPs-11C12), achieving precise localization to cancer cells. The release amount of DOX observed fromin vitrodrug release profiles increased as follows: pH 7.4 < pH 6.8 < pH 5.4, demonstrating that the DOX release could be accelerated in a weakly acidic environment.In vitrocytotoxicity experiments displayed that SFNPs-11C12 nanoparticles exhibited good safety and biocompatibility. Drug-loaded nanoparticles, DOX@SFNPs-11C12, led to higher LoVo cells apoptosis compared to DOX@SFNPs. Fluorescence spectrophotometer characterization and confocal laser scanning microscopy further showed that the internalization of DOX was highest in the DOX@SFNPs-11C12, certifying that the introduced targeting molecule enhanced the uptake of drug delivery system by LoVo cells. This study provides a simple and operational approach to developing an optimized SFNPs drug delivery system modified by targeting Nb, which can be a good candidate for CRC therapy.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Fibroínas , Nanopartículas , Humanos , Fibroínas/química , Antígeno Carcinoembrionario , Nanopartículas/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno
9.
Arch. endocrinol. metab. (Online) ; 67(1): 55-63, Jan.-Feb. 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420100

RESUMEN

ABSTRACT Objective: MCM3AP-AS1 has been characterized as an oncogenic long non-coding RNA (lncRNA) in several cancers including papillary thyroid cancer (PTC), but its role in PTC has not been fully elucidated. Considering the critical role of lncRNAs in cancer biology, further functional analysis of MCM3AP-AS1 in PTC may provide novel insights into PTC management. Subjects and methods: Paired tumor and non-tumor tissues were collected from 63 papillary thyroid carcinoma (PTC) patients. Expression levels of MCM3AP-AS1 , miR-218 and GLUT1 in tissue samples were analyzed by qRT-PCR. Cell transfection was performed to explore the interactions among MCM3AP-AS1 , miR-218 and GLUT1 . Cell proliferation assay was performed to evaluate the effects of MCM3AP-AS1 and miR-218 on cell proliferation. Results: MCM3AP-AS1 accumulated to high levels in PTC tissues and was affected by clinical stage. MCM3AP-AS1 showed a positive correlation with GLUT1 across PTC tissues. RNA interaction prediction showed that MCM3AP-AS1 could bind to miR-218 , which can directly target GLUT1 . MCM3AP-AS1 and miR-218 showed no regulatory role regulating the expression of each other, but overexpression of MCM3AP-AS1 upregulated GLUT1 and enhanced cell proliferation. In contrast, overexpression of miR-218 downregulated GLUT1 and attenuated cell proliferation. In addition, miR-218 suppressed the role of MCM3AP-AS1 in regulating the expression of GLUT1 and cell proliferation. Conclusions: MCM3AP-AS1 may serve as a competing endogenous RNA of miR-218 to upregulate GLUT1 in PTC, thereby promoting cell proliferation. The MCM3AP-AS1/miR-218/GLUT1 pathway characterized in the present study might serve as a potential target to treat PTC.

10.
Cereb Cortex ; 33(9): 5082-5096, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288912

RESUMEN

Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Corteza Cerebral
11.
Arch Endocrinol Metab ; 67(1): 55-63, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35929906

RESUMEN

Objective: MCM3AP-AS1 has been characterized as an oncogenic long non-coding RNA (lncRNA) in several cancers including papillary thyroid cancer (PTC), but its role in PTC has not been fully elucidated. Considering the critical role of lncRNAs in cancer biology, further functional analysis of MCM3AP-AS1 in PTC may provide novel insights into PTC management. Subjects and methods: Paired tumor and non-tumor tissues were collected from 63 papillary thyroid carcinoma (PTC) patients. Expression levels of MCM3AP-AS1, miR-218 and GLUT1 in tissue samples were analyzed by qRT-PCR. Cell transfection was performed to explore the interactions among MCM3AP-AS1, miR-218 and GLUT1. Cell proliferation assay was performed to evaluate the effects of MCM3AP-AS1 and miR-218 on cell proliferation. Results: MCM3AP-AS1 accumulated to high levels in PTC tissues and was affected by clinical stage. MCM3AP-AS1 showed a positive correlation with GLUT1 across PTC tissues. RNA interaction prediction showed that MCM3AP-AS1 could bind to miR-218, which can directly target GLUT1. MCM3AP-AS1 and miR-218 showed no regulatory role regulating the expression of each other, but overexpression of MCM3AP-AS1 upregulated GLUT1 and enhanced cell proliferation. In contrast, overexpression of miR-218 downregulated GLUT1 and attenuated cell proliferation. In addition, miR-218 suppressed the role of MCM3AP-AS1 in regulating the expression of GLUT1 and cell proliferation. Conclusion: MCM3AP-AS1 may serve as a competing endogenous RNA of miR-218 to upregulate GLUT1 in PTC, thereby promoting cell proliferation. The MCM3APAS1/ miR-218/GLUT1 pathway characterized in the present study might serve as a potential target to treat PTC.


Asunto(s)
Transportador de Glucosa de Tipo 1 , MicroARNs , ARN Largo no Codificante , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Transportador de Glucosa de Tipo 1/genética , Péptidos y Proteínas de Señalización Intracelular , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología
12.
Int J Oncol ; 61(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796015

RESUMEN

Brain metastases (BM) have been closely associated with increased morbidity and poor survival outcomes in patients with non­small cell lung cancer (NSCLC). Excluding risk factors in histological subtypes, genomic alterations, including epidermal growth factor receptor mutations and anaplastic lymphoma kinase (ALK) rearrangements have been also regarded as greater risk factors for BM in the aspect of molecular subtypes. In the present study, 69 tumor tissues and 51 peripheral blood samples from patients with NSCLC were analyzed using a hybridization capture­based next­generation sequencing (NGS) panel, including 95 known cancer genes. Among the 90 patients with stage IV NSCLC, 26 cases suffered from BM and 64 cases did not. In total, 174 somatic mutations in 35 mutated genes were identified, and 12 of these genes were concurrently present in the BM group and the non­BM group. Importantly, five mutated genes including ALK, cytidine deaminase (CDA), SMAD family member 4 (SMAD4), superoxide dismutase 2 (SOD2) and Von Hippel­Lindau tumor suppressor (VHL) genes were uniquely detected in the BM group, and they were enriched in the Hippo signaling pathway, pyrimidine metabolism and pantothenate and co­enzyme A (CoA) biosynthesis, as demonstrated using Kyoto Encyclopedia of Genes and Genomes enrichment analysis. RNA polymerase II transcription regulator complex and promyelocytic leukemia nuclear body were the top functional categories according to the Gene Ontology enrichment analysis in the BM group and non­BM group, respectively. Furthermore, 43.33% (13/30) of mutated genes were detected by both tumor tissue deoxyribonucleic acid (DNA) and plasma­derived circulating tumor DNA (ctDNA) in the non­BM group, while this percentage was only limited to 29.41% (5/17) in the BM group. To summarize, significant differences in somatic mutations, somatic interactions, key signaling pathways, functional biological information, and clinical actionability for the therapy of targeted agents were founded between the BM group and the non­BM group, and ctDNA analysis may by applied as a more credible alternative for genomic profiling in patients with advanced NSCLC without BM, due to its higher consistency for genomic profiling between ctDNA analysis and tissue DNA analysis.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN , Genómica , Humanos , Neoplasias Pulmonares/patología
13.
ACS Biomater Sci Eng ; 8(8): 3341-3353, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35894734

RESUMEN

Spider silk has attracted extensive attention in the development of high-performance tissue engineering materials because of its excellent physical properties, biocompatibility, and biodegradability. Although high-molecular-weight recombinant spider silk proteins can be obtained through metabolic engineering of host bacteria, the solubility of the recombinant protein products is always poor. Strong denaturants and organic solvents have thus had to be exploited for their dissolution, and this seriously limits the applications of recombinant spider silk protein-based composite biomaterials. Herein, through adjusting the temperature, ionic strength, and denaturation time during the refolding process, we successfully prepared water-soluble recombinant spider major ampullate spidroin 1 (sMaSp1) with different repeat modules (24mer, 48mer, 72mer, and 96mer). Then, MaSp1 was introduced into the collagen matrix for fabricating MaSp1-collagen composite films. The introduction of spider silk proteins was demonstrated to clearly alter the internal structure of the composite films and improve the mechanical properties of the collagen-based films and turn the opaque protein films into transparency ones. More interestingly, the composite film prepared with sMaSp1 exhibited better performance in mechanical strength and cell adhesion compared to that prepared with water-insoluble MaSp1 (pMaSp1), which might be attributed to the effect of the initial dissolved state of MaSp1 on the microstructure of composite films. Additionally, the molecular weight of MaSp1 was also shown to significantly influence the mechanical strength (enhanced to 1.1- to 2.3-fold) and cell adhesion of composite films, and 72mer of sMaSp1 showed the best physical properties with good bioactivity. This study provides a method to produce recombinant spider silk protein with excellent water solubility, making it possible to utilize this protein under environmentally benign, mild conditions. This paves the way for the application of recombinant spider silk proteins in the development of diverse composite biomaterials.


Asunto(s)
Seda , Agua , Proteínas de Artrópodos , Materiales Biocompatibles , Colágeno , Proteínas Recombinantes/química , Seda/química , Agua/química
14.
Anim Reprod Sci ; 241: 106991, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35569345

RESUMEN

Short-term storage of semen is a simple and inexpensive procedure to deal with logistics of large-scale hatchery operations but can lead to oxidative stress and a significant decrease in sperm motility and velocity. To better understand the mechanisms responsible for the association of poor sperm quality with oxidative stress, in the present study we investigated the effect of refrigerated storage for 0, 24, 48, 72, and 144 h on sperm motility and curvilinear velocity and oxidant/antioxidant balance of common carp Cyprinus carpio. Percentage of motile sperm was significantly (p < 0.05) reduced stored for 72 h storage compared to that of fresh sperm. Sperm stored 144 h showed < 40% motility with an average velocity of 91.12 ± 10.4 µm s-1. A time-dependent increase in the level of the oxidative stress indices lipid peroxidation and carbonyl derivatives of proteins was observed. Increase (p > 0.05) in total superoxide dismutase was detected after 48 h, and glutathione reductase and glutathione peroxidase activity demonstrated a significant increase after 72 h. These results provide an additional tool for the development and improvement of short-term sperm preservation procedures commonly applied in aquaculture.


Asunto(s)
Carpas , Preservación de Semen , Animales , Antioxidantes/farmacología , Criopreservación/métodos , Criopreservación/veterinaria , Masculino , Estrés Oxidativo , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides/metabolismo
15.
Appl Microbiol Biotechnol ; 106(5-6): 1967-1977, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243528

RESUMEN

Nanobodies show a great potential in biomedical and biotechnology applications. Bacterial expression is the most widely used expression system for nanobody production. However, the yield of nanobodies is relatively low compared to that of eukaryotic systems. In this study, the repetitive amino acid sequence motifs (GAGAGS) found in silk fibroin protein (SFP) were developed as a novel fusion tag (SF-tag) to enhance the expression of nanobodies in Escherichia coli. SF-tags of 1 to 5 hexapeptide units were fused to the C-terminus of 4G8, a nanobody against human epididymis protein 4 (HE4). The protein yield of 4G8 variants was increased by the extension of hexapeptide units and achieved a 2.5 ~ 7.1-fold increase compared with that of untagged 4G8 (protein yield of 4G8-5C = 0.307 mg/g vs that of untagged 4G8 = 0.043 mg/g). Moreover, the fusion of SF-tags not only had no significant effect on the affinity of 4G8, but also showed a slight increase in the thermal stability of SF-tag-fused 4G8 variants. The fusion of SF-tags increased the transcription of 4G8 by 2.3 ~ 7.0-fold, indicating SF-tags enhanced the protein expression at the transcriptional level. To verify the applicability of the SF-tags for other nanobody expression, we further investigated the protein expression of two other anti-HE4 nanobodies 1G8 and 3A3 upon fusion with the SF-tags. Results indicated that the SF-tags enhanced the protein expression up to 5.2-fold and 5.7-fold for 1G8 and 3A3, respectively. For the first time, this study reported a novel and versatile fusion tag system based on the SFP for improving nanobody expression in Escherichia coli, which may enhance its potential for wider applications.Key points• A silk fibroin protein-based fusion tag (SF-tag) was developed to enhance the expression of nanobodies in Escherichia coli.• The SF-tag enhanced the nanobody expression at the transcriptional level.• The fusion of SF-tag had no significant effect on the affinity of nanobodies and could slightly increase the thermal stability of nanobodies.


Asunto(s)
Fibroínas , Anticuerpos de Dominio Único , Biotecnología , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroínas/genética , Humanos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/química
16.
Int J Biol Macromol ; 199: 298-306, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35016970

RESUMEN

Human epididymis protein 4 (HE4) is a glycoprotein secreted by epithelial ovarian cancer (EOC) cells and is a novel and specific biomarker for diagnosing and prognosing EOC. Previous studies have shown that overexpression of HE4 is correlated with EOC tumorigenesis and chemoresistance. However, less has been reported regarding the direct effect of the secreted HE4 protein as an autocrine factor in EOC cells. Here, we investigated the molecular mechanism of the secretory form of HE4 on the growth of EOC cells by applying nanobodies with a targeted interaction of free HE4. Three anti-HE4 nanobodies were selected from an immune library by phage display. HE4 secreted by serum-free cultured OVCAR3 cells increased and was effectively neutralized by anti-HE4 nanobodies, which inhibited cell viability. Treatment with the anti-HE4 nanobody 1G8 decreased Bcl-2 expression and increased BAX, cleaved PARP, and p53 levels, resulting in apoptosis of OVCAR3 cells. Moreover, 1G8 significantly improved the cisplatin response of OVCAR3 cells. Our data suggest that secretory HE4 played a novel pro-survival autocrine role and was a target of the anti-HE4 nanobody to improve the therapeutic effects of cisplatin-based chemotherapy.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Anticuerpos de Dominio Único , Apoptosis , Biomarcadores de Tumor/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Humanos , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Anticuerpos de Dominio Único/farmacología
17.
Front Public Health ; 9: 727047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568265

RESUMEN

The worldwide spread of COVID-19 dramatically influences the world economic landscape. In this paper, we have quantitatively investigated the time-frequency co-movement impact of COVID-19 on U.S. and China stock market since early 2020 in terms of daily observation from National Association of Securities Dealers Automated Quotations Index (NDX), Dow Jones Industrial Average (DJIA), Standard & Poor's 500 Index (SPX), Shanghai Securities Composite Index (SSEC), Shenzhen Securities Component Index (SZI), in favor of spatiotemporal interactions over investor sentiment index, and propose to explore the divisibility and the predictability to the volatility of stock market during the development of COVID-19. We integrate evidence yielded from wavelet coherence and phase difference to suggest the responses of stock market indexes to the COVID-19 epidemic in a long-term band, which could be roughly divided into three distinguished phases, namely, 30-75, 110-150, and 220-280 business days for China, and 80-125 and 160-175 after 290 business days for the U.S. At the first phase, the reason for the extreme volatility of stock market mainly attributed to the sudden emergence of the COVID-19 epidemic due to the pessimistic expectations from investors; China and U.S. stock market shared strongly negative correlation with the growing number of COVID-19 cases. At the second phase, the revitalization of stock market shared strong simultaneous moves but exhibited opposite responses to the COVID-19 impact on China and U.S. stock market; the former retained a significant negative correlation, while the latter turned to positively correlated throughout the period. At the third phase, the progress in vaccine development and economic stimulus began to impose forces to stock market; the vulnerability to COVID-19 diminished to some extent as the investor sentiment indexes rebounded. Finally, we attempted to initially establish a coarse-grained representation to stock market indexes and investor sentiment indexes, which demonstrated the homogenous spacial distribution in the vectorgraph after normalization and quantization, implying the strong consistency when filtering the frequent small fluctuations during the evolution of the COVID-19 pandemic, which might help insights into the prediction of possible status transition in stock market performance under the public health issues, potentially performing as the quantitative references in reasonably deducing the economic influences.


Asunto(s)
COVID-19 , Pandemias , China , Humanos , Inversiones en Salud , SARS-CoV-2
18.
Sensors (Basel) ; 21(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068599

RESUMEN

Sand waves constitute ubiquitous geomorphology distribution in the ocean. In this paper, we quantitatively investigate the sand wave variation of topology, morphology, and evolution from the high-resolution mapping of a side scan sonar (SSS) in an Autonomous Underwater Vehicle (AUV), in favor of online sequential Extreme Learning Machine (OS-ELM). We utilize echo intensity directly derived from SSS to help accelerate detection and localization, denote a collection of Gaussian-type morphological templates, with one integrated matching criterion for similarity assessment, discuss the envelope demodulation, zero-crossing rate (ZCR), cross-correlation statistically, and estimate the specific morphological parameters. It is demonstrated that the sand wave detection rate could reach up to 95.61% averagely, comparable to deep learning such as MobileNet, but at a much higher speed, with the average test time of 0.0018 s, which is particularly superior for sand waves at smaller scales. The calculation of morphological parameters primarily infer a wave length range and composition ratio in all types of sand waves, implying the possible dominant direction of hydrodynamics. The proposed scheme permits to delicately and adaptively explore the submarine geomorphology of sand waves with online computation strategies and symmetrically integrate evidence of its spatio-temporal responses during formation and migration.

19.
World J Microbiol Biotechnol ; 36(12): 176, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33103226

RESUMEN

Nerve growth factor (NGF) is an essential trophic factor for the growth and survival of neurons in the central and peripheral nervous systems. For many years, mouse NGF (mNGF) has been used to treat various neuronal and non-neuronal disorders. However, the biological activity of human NGF (hNGF) is significantly higher than that of mNGF in human cells. Using the CRISPR/Cas9 system, we constructed the transgenic mice expressing hNGF specifically in their submandibular glands. As demonstrated by fluorescence immunohistochemical staining, these mice produced hNGF successfully, with 0.8 mg produced per gram of submandibular glands. hNGF with 99% purity was successfully extracted by two-step ion-exchange chromatography and one-step size-exclusion chromatography from the submandibular glands of these transgenic mice. Further, the purified hNGF was verified by LC-MS/MS. We analyzed the NH2-terminus of hNGF using both Edman degradation and LC-MS/MS-based methods. Both results showed that the obtained hNGF lost the NH2-terminal octapeptide (SSSHPIFH). Moreover, the produced hNGF demonstrated a strong promotion in the proliferation of TF1 cells.


Asunto(s)
Edición Génica/métodos , Factor de Crecimiento Nervioso/aislamiento & purificación , Factor de Crecimiento Nervioso/metabolismo , Glándula Submandibular/metabolismo , Animales , Línea Celular , Proliferación Celular , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Humanos , Ratones , Ratones Transgénicos , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/genética , Dominios Proteicos , Ingeniería de Proteínas
20.
J Biotechnol ; 323: 107-112, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795502

RESUMEN

Hirudin, a blood anticoagulant, is the most potent natural thrombin inhibitor of leech origin. Its application is limited because it is difficult to obtain abundant natural hirudin directly from the leech. Although some bioengineering methods can significantly increase the production of hirudin, the reduced efficacy of recombinant hirudin (rH) remains a critical shortcoming. The lack of sulfation of tyrosine 63 in rH is an important cause of its inadequate performance. This article is the first report of periplasmic co-expression of an rH-I analogue with arylsulfotransferase (ASST) in E. coli BL21(DE3). Co-expressed rH-I analogue with sulfate donor substrate (p-nitrophenyl sulfate potassium) showed anticoagulant (rabbit and goat serum) activity twice more than rH-I analogue expressed without ASST, indicating its potential periplasmic sulfation. Moreover, purified rH-I analogue showed above 4.5 times higher anticoagulant activity compared to therapeutic anti-thrombotic heparin (HE). At the same time, pH-dependent differential solubility was employed to purify rH analogues from fermentation broth, which is a simple, fast and inexpensive purification technology, and can potentially be used for larger scale purification. This will also greatly improve the application of rH in clinical treatment.


Asunto(s)
Anticoagulantes/metabolismo , Anticoagulantes/farmacología , Arilsulfotransferasa/metabolismo , Escherichia coli/metabolismo , Hirudinas/farmacología , Periplasma/metabolismo , Animales , Escherichia coli/genética , Cabras , Hirudinas/genética , Conejos , Proteínas Recombinantes , Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...