Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39145906

RESUMEN

The utilization of biowastes for producing biochar to remove potentially toxic elements from water represents an important pathway for aquatic ecosystem decontamination. Here we explored the significance of thiol-functionalization on sugarcane bagasse biochar (Th/SCB-BC) and rice husk biochar (Th/RH-BC) to enhance arsenite (As(III)) removal capacity from water and compared their efficiency with both pristine biochars (SCB-BC and RH-BC). The maximum As(III) sorption was found on Th/SCB-BC and Th/RH-BC (2.88 and 2.51 mg g-1, respectively) compared to the SCB-BC and RH-BC (1.51 and 1.40 mg g-1). Relatively, a greater percentage of As(III) removal was obtained with Th/SCB-BC and Th/RH-BC (92% and 83%, respectively) at a pH 7 compared to pristine SCB-BC and RH-BC (65% and 55%) at 6 mg L-1 initial As(III) concentration, 2 h contact time and 1 g L-1 sorbent dose. Langmuir (R2 = 0.99) isotherm and pseudo-second-order kinetic (R2 = 0.99) models provided the best fits to As(III) sorption data. Desorption experiments indicated that the regeneration ability of biochars decreased and it was in the order of Th/SCB-BC (88%) > Th/RH-BC (82%) > SCB-BC (77%) > RH-BC (69%) up to three sorption-desorption cycles. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy results demonstrated that the thiol (-S-H) functional groups were successfully grafted on the surface of two biochars and as such contributed to enhance As(III) removal from water. Spectroscopic data indicated that the surface functional moieties, such as -S-H, - OH, - COOH, and C = O were involved to increase As(III) sorption on thiol-functionalized biochars. This study highlights that thiol-grafting on both biochars, notably on SCB-BC, enhanced their ability to remove As(III) from water, which can be used as an effective technique for the treatment of As from drinking water.

2.
Sci Total Environ ; 951: 175531, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147056

RESUMEN

Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities. Although not discussed critically, the organo-forms of these inorganic metal(loid)s are considered a greater risk to humans than their elemental forms possibly due to physico-chemical modulation triggering redox alterations or by the involvement of biological metabolism. This extensive review describes the chemical and physical causes of organometals and organometal(loid)s distribution in the environment with ecotoxicity assessment and potential remediation strategies. Organo forms of various metal(loid)s, such as mercury (Hg), arsenic (As), lead (Pb), tin (Sn), antimony (Sb), selenium (Se), and cadmium (Cd) have been discussed in the context of their ecotoxicity. In addition, we elaborated on the transformation, speciation and transformation pathways of these toxic metal(loid)s in soil-water-plant-microbial systems. The present review has pointed out the status of toxic organometal(loid)s, which is required to make the scientific community aware of this pressing condition of organometal(loid)s distribution in the environment. The gradual disposal and piling of organometal(loid)s in the environment demand a thorough revision of the past-present status with possible remediation strategies prescribed as reflected in this review.

3.
Environ Res ; 258: 119419, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879107

RESUMEN

Nano-zerovalent iron (nZVI) is a promising material for the removal of both organic and inorganic pollutants from contaminated water. This study investigates the potential of a novel composite of nZVI on a polymer-derived supporting ceramic (nZVI-PDC) synthesized via the liquid-phase reduction method for the simultaneous adsorption and Fenton-type reduction of bromate anion (BrO3-) in water. The nZVI nanoparticles were effectively anchored onto the PDC by impregnating high-yield carbon in a ferrous sulfate solution. The PDC facilitated the uniform dispersion of nZVI nanoparticles due to its multiple active sites distributed within mesocarbon cavities. The developed nZVI-PDC composite exhibited a high specific surface area of 837 m2 g-1 and an ordered mesoporous structure with a pore volume of 0.37 cm3 g-1. As an adsorbent, the nZVI-PDC composite exhibited a maximum adsorption capacity (qe) of 842 mg g-1 and a partition coefficient (KH) of 10.2 mg g-1 µM-1, as calculated by the pseudo-second-order model. As a catalyst, the composite demonstrated a reaction kinetic rate of 43.5 µmol g-1 h-1 within 6 h at pH 4, using a dosage of 60 mg L-1 nZVI-PDC and a concentration of 0.8 mmol L-1 H2O2. Comparatively, PDC exhibited a qe of 408 mg g-1, KH of 1.67 mg g-1 µM-1, and a reaction rate of 20.8 µmol g-1 h-1, while nZVI showed a qe of 456 mg g-1, KH of 2.30 mg g-1 µM-1, and a reaction rate of 27.2 µmol g-1 h-1. The modelling indicated that the nZVI-PDC composite followed pseudo-second-order kinetics. The remarkable removal efficiency of the nZVI-PDC composite was attributed to the synergistic effects between PDC and nZVI, where PDC facilitated charge transfer, promoting Fe2+ generation and the Fe3+/Fe2+ cycle. Overall, this work introduces a promising adsorption technology for the efficient removal of BrO3- from contaminated aqueous solutions, highlighting the significant potential of the nZVI-PDC composite in water purification applications.


Asunto(s)
Bromatos , Cerámica , Hierro , Contaminantes Químicos del Agua , Hierro/química , Adsorción , Contaminantes Químicos del Agua/química , Cerámica/química , Bromatos/química , Purificación del Agua/métodos , Peróxido de Hidrógeno/química , Polímeros/química , Oxidación-Reducción , Nanopartículas del Metal/química
4.
Environ Sci Pollut Res Int ; 31(17): 26019-26035, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492145

RESUMEN

This study synthesized a new thiomalic acid-modified rice husk biochar (TMA-BC) as a versatile and eco-friendly sorbent. After undergoing chemical treatments, the mercerized rice husk biochar (NaOH-BC) and TMA-BC samples showed higher BET surface area values of 277.1 m2/g and 305.8 m2/g, respectively, compared to the pristine biochar (BC) sample, which had a surface area of 234.2 m2/g. In batch adsorption experiments, it was found that the highest removal efficiency for malachite green (MG) was achieved with TMA-BC, reaching 96.4%, while NaOH-BC and BC exhibited removal efficiencies of 38.6% and 27.9%, respectively, at pH 8. The engineered TMA-BC exhibited a super adsorption capacity of 104.17 mg/g for MG dye at pH 8.0 and 25 °C with a dosage of 2 g/L. The SEM, TEM, XPS, and FTIR spectroscopy analyses were performed to examine mesoporous features and successful TMA-BC carboxylic and thiol functional groups grafting on biochar. Electrostatic forces, such as π - π interactions, hydrogen bonding, and pore intrusion, were identified as key factors in the sorption of MG dye. As compared to single-solution adsorption experiments, the binary solution experiments performed at optimized dosages of undesired ions, such as humic acid, sodium dodecyl sulfate surfactant, NaCl, and NaSCN, reflected an increase in MG dye removal of 2.8%, 8.7%, 5.4%, and 12.7%, respectively, which was attributed to unique mesoporous features and grafted functional groups of TMA-BC. Furthermore, the TMA-BC showed promising reusability up to three cycles. Our study indicates that mediocre biochar modified with TMA can provide an eco-friendly and cost-effective alternative to commercially accessible adsorbents.


Asunto(s)
Colorantes de Rosanilina , Contaminantes Químicos del Agua , Ligandos , Hidróxido de Sodio , Contaminantes Químicos del Agua/química , Cinética , Carbón Orgánico/química , Adsorción
5.
Environ Sci Pollut Res Int ; 31(16): 23549-23567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421541

RESUMEN

Arsenic (As) contamination of rice grain poses a serious threat to human health. Therefore, it is crucial to reduce the bioavailability of As in the soil and its accumulation in rice grains to ensure the safety of food and human health. In this study, mango (Mangifera indica) leaf-derived biochars (MBC) were synthesized and modified with iron (Fe) to produce FeMBC. In this study, 0.5 and 1% (w/w) doses of MBC and FeMBC were used. The results showed that 1% FeMBC enhanced the percentage of filled grains/panicle and biomass yield by 17 and 27%, respectively, compared to the control. The application of 0.5 and 1% FeMBC significantly (p < 0.05) reduced bioavailable soil As concentration by 33 and 48%, respectively, in comparison to the control. The even higher As flux in the control group as compared to the biochar-treated groups indicates the lower As availability to biochar-treated rice plant. The concentration of As in rice grains was reduced by 6 and 31% in 1% MBC and 1% FeMBC, respectively, compared to the control. The reduction in As concentration in rice grain under 1% FeMBC was more pronounced due to reduced bioavailability of As and enhanced formation of Fe-plaque. This may restrict the entry of As through the rice plant. The concentrations of micronutrients (such as Fe, Zn, Se, and Mn) in brown rice were also improved after the application of both MBC and FeMBC in comparison to the control. This study indicates that the consumption of parboiled rice reduces the health risk associated with As compared to cooked sunned rice. It emphasizes that 1% MBC and 1% FeMBC have great potential to decrease the uptake of As in rice grains.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Humanos , Hierro/análisis , Oryza/metabolismo , Arsénico/análisis , Carbón Orgánico/metabolismo , Suelo , Contaminantes del Suelo/análisis , Cadmio/análisis
6.
Int J Phytoremediation ; 26(8): 1243-1252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265045

RESUMEN

There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.


Till date, abundant research has focused on plant biophysicochemical responses to different types of pollutants. However, the majority of these studies dealt with pollutant exposure to mature plants (generally after a vegetative growth period of 1­2 weeks). Despite significant research, there are still limited data regarding the biophysicochemical responses of plants at their early stages of germination and growth. In fact, stresses at germination or at an early stage of growth can be highly fatal and may significantly affect the ultimate plant growth and potential to remediate the contaminated sites. Therefore, the current study deals with the exposure of germinating pea seedlings to arsenic (As) stress under varied amendments. This experimental plan helped to understand the initial biophysicochemical changes induced in pea plants under As stress.


Asunto(s)
Arsénico , Germinación , Pisum sativum , Plantones , Contaminantes del Suelo , Pisum sativum/efectos de los fármacos , Pisum sativum/fisiología , Plantones/crecimiento & desarrollo , Germinación/efectos de los fármacos , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , Calcio/metabolismo , Ácido Edético/farmacología , Biodegradación Ambiental , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas , Estrés Fisiológico
7.
Int J Phytoremediation ; 26(6): 882-893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37933838

RESUMEN

Due to industrialization and urbanization, the use of detergents inadvertently led to contamination of aquatic environments, thus posing potential threat to aquatic organisms and human health. One of the main components of detergents is linear alkylbenzene sulfonate (LAS), which can cause toxic effects on living organisms, particularly aquatic life in the environment. In this study, floating treatment wetlands (FTWs) mesocosms were developed and augmented with LAS-degrading bacteria. The plant species, Brachiaria mutica (Para grass), was vegetated to establish FTWs and bacterial consortium (1:1:1:1) of Pseudomonas aeruginosa strain PJRS20, Bacillus sp. BRRH60, Acinetobacter sp. strain CYRH21, and Burkholderia phytofirmans Ps.JN was augmented (free or immobilized) in these mesocosms. Results revealed that the FTWs removed LAS from the contaminated water and their augmentation with bacteria slightly increased LAS removal during course of the experiment. Maximum reduction in LAS concentration (94%), chemical oxygen demand (91%), biochemical oxygen demand (93%), and total organic carbon (91%) was observed in the contaminated water having FTWs augmented with bacterial consortium immobilized on polystyrene sheet. This study highlights that the FTWs supported with immobilized bacteria on polystyrene sheets can provide an eco-friendly and sustainable solution for the remediation of LAS-bearing water, especially for developing countries like Pakistan.


This pilot-scale study provided insights to resolve the detergent-contaminated wastewater issue, using floating treatment wetlands (FTWs) augmented with bacteria. The FTWs augmented with bacteria immobilized on a polystyrene sheet and vegetated with Brachiaria mutica led to high degradation of LAS, a toxic compound of detergent, from the contaminated water.


Asunto(s)
Detergentes , Contaminantes Químicos del Agua , Humanos , Humedales , Poliestirenos , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Bacterias , Agua
8.
Int J Phytoremediation ; 26(6): 816-837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37994831

RESUMEN

Glyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations. Still, the complete resistance of Gly indicates that chelation of metal cations does not play a role in herbicidal efficacy or have a substantial impact on mineral nutrition. Due to its extensive and inadequate use, this herbicide has been frequently detected in soil (2 mg kg-1, European Union) and in stream water (328 µg L-1, USA), mostly in surface (7.6 µg L-1, USA) and groundwater (2.5 µg L-1, Denmark). International Agency for Research on Cancer (IARC) already classified Gly as a category 2 A carcinogen in 2016. Therefore, it is necessary to find the best degradation techniques to remediate soil and aquatic environments polluted with Gly. This review elucidates the effects of Gly on humans, soil microbiota, plants, algae, and water. This review develops deeper insight toward the advances in Gly biodegradation using microbial communities. This review provides a thorough understanding of Gly interaction with mineral elements and its limitations by interfering with the plants biochemical and morphological attributes.


Glyphosate (Gly) contamination in water, soil, and crops is an eminent threat globally. Various advanced and integrated approaches have been reported to remediate Gly contamination from the water-soil-crop system. This review elucidates the effects of Gly on human health, soil microbial communities, plants, algae, and water. This review develops deeper insight into the advances in Gly biodegradation using microbial communities, particularly soil microbiota. This review provides a brief understanding of Gly interaction with mineral elements and its limitations in interfering with the plants biochemical and morphological attributes.


Asunto(s)
Herbicidas , Microbiota , Humanos , Glifosato , Suelo , Glicina/metabolismo , Biodegradación Ambiental , Herbicidas/metabolismo , Cationes , Minerales
9.
Int J Phytoremediation ; 26(3): 349-368, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37559458

RESUMEN

Wastewater contamination with heavy metal(loids)s has become a worldwide environmental and public health problem due to their toxic and non-degradable nature. Different methods and technologies have been applied for water/wastewater treatment to mitigate heavy metal(loid)-induced toxicity threat to humans. Among various treatment methods, adsorption is considered the most attractive method because of its high ability and efficiency to remove contaminants from wastewater. Agricultural waste-based adsorbents have gained great attention because of high efficiency to heavy metal(loids)s removal from contaminated water. Chemically modified biosorbents can significantly enhance the stability and adsorption ability of the sorbents. The two mathematical models of sorption, Freundlich and Langmuir isotherm models, have mostly been studied. In kinetic modeling, pseudo-second-order model proved better in most of the studies compared to pseudo-first-order model. The ion exchange and electrostatic attraction are the main mechanisms for adsorption of heavy metal(loid)s on biosorbents. The regeneration has allowed various biosorbents to be recycled and reused up to 4-5 time. Most effective eluents used for regeneration are dilute acids. For practical perspective, biosorbent removal efficiency has been elucidated using various types of wastewater and economic analysis studies. Economic analysis of adsorption process using agricultural waste-based biosorbents proved this approach cheaper compared to traditional commercial adsorbents, such as chemically activated carbon. The review also highlights key research gaps to advance the scope and application of waste peels for the remediation of heavy metal(loid)s-contaminated wastewater.


This review provides new information and insights on the potential utilization of agriculture-based biosorbents for the removal of contaminants, especially heavy metal(loid)s from toxic water/wastewater, as well as their mechanisms, adsorption efficiency, and regeneration ability. For practical perspective, biosorbent adsorption efficiency was elucidated by using various types of wastewater and economic analysis studies.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Biodegradación Ambiental , Modelos Teóricos , Adsorción , Cinética , Agua
10.
Int J Phytoremediation ; 26(3): 294-303, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37493366

RESUMEN

Under paddy soil conditions, rice plants are vulnerable to arsenic (As) accumulation, thus causing potential threat to human health. Here we investigated the influence of foliar-applied phosphorus (P: 10 and 20 mg L-1), silicon (Si: 0.6 and 1.5 g L-1) and selenium (Se: 5 and 10 mg L-1) on As accumulation, morphological and physiological attributes of two contrasting rice genotypes (KSK-133 and Super Basmati) under As stress (25 mg kg-1 as arsenate). Silicon foliar dressing significantly (p < 0.05) reduced grain As uptake (up to 67%) and improved rice growth and chlorophyll content (28-66%) in both rice genotypes over their controls. Phosphorus foliar application resulted in a notable decrease (17%) in grain As uptake of coarse rice genotype (KSK-133), while it slightly increased grain As uptake in the fine one (Super Basmati; 6%) compared to controls. However, foliar-applied Se did not show significant effects on rice plants growth attributes and As uptake in both genotypes. Similarly, biochemical and enzymatic attributes (i.e., lipid peroxidation, electrolyte leakage, peroxidase and catalase) were improved with Si application in rice plants, except for P treatment that was only effective for coarse one. Foliar-applied Si also resulted in reduced cancer risk and hazard quotient (< 0.10) for both rice genotypes. This study advances our understanding on critical role of different foliar-applied nutrients and rice genotypes, which is imperative to develop effective As remediation and management strategies in coarse and fine rice genotypes and protect human health.


This study provided new insights on the significance of foliar-applied phosphorus, silicon and selenium for the management and remediation of arsenic in fine (Super Basmati) and coarse (KSK-133) rice genotypes. Foliar-applied silicon was the most promising strategy to mitigate arsenic uptake and minimizing health risk in rice grain of both genotypes, while phosphorus was effective only for coarse one, thus showing a genotype dependent response. Interestingly, selenium foliar application had no significant effect on arsenic accumulation in both rice genotypes.


Asunto(s)
Arsénico , Oryza , Selenio , Contaminantes del Suelo , Humanos , Silicio/análisis , Silicio/farmacología , Fósforo , Oryza/genética , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Suelo/química , Genotipo , Grano Comestible/química
11.
Int J Phytoremediation ; 26(2): 287-293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37501357

RESUMEN

Contamination of aquatic ecosystems with organic and inorganic contaminants is a global threat due to their hazardous effects on the environment and human health. Floating treatment wetland (FTW) technology is a cost-effective and sustainable alternative to existing treatment approaches. It consists of a buoyant mat in which wetland plants can grow and develop their roots in a suspended manner and can be implemented to treat stormwater, municipal wastewater, and industrial effluents. Here we explored the potential of bacterial-augmented FTWs for the concurrent remediation of phenol and hexavalent chromium (Cr6+) contaminated water and evaluated treated water toxicity using Triticum aestivum L. (wheat) as a test plant. The FTWs carrying Phragmites australis L. (common reed) were inoculated with a consortium of four bacterial strains (Burkholderia phytofirmans PsJN, Acinetobacter lwofii ACRH76, Pseudomonas aeruginosa PJRS20, Bacillus sp. PJRS25) and evaluated for their potential to simultaneously remove phenol and chromium (Cr) from contaminated water. Results revealed that the FTWs efficiently improved water quality by removing phenol (86%) and Cr (80%), with combined use of P. australis and bacterial consortium after 50 days. The phytotoxicity assay demonstrated that the germination of wheat seed (96%) was significantly higher where bacterial-augmented FTWs treated water was used compared to untreated water. This pilot-scale study highlights that the combined application of wetland plants and bacterial consortium in FTWs is a promising approach for concomitant abatement of phenol and Cr from contaminated water, especially for developing countries like Pakistan where the application of advanced and expensive technologies is limited.


This pilot-scale research provides new interventions and information required for establishing a large-scale remediation framework for the effective, sustainable and eco-friendly remediation of phenol and Cr co-contaminated aquatic ecosystems, using bacterial augmented floating wetlands technology (FTWs).


Asunto(s)
Fenol , Contaminantes Químicos del Agua , Humanos , Humedales , Ecosistema , Biodegradación Ambiental , Bacterias , Cromo , Fenoles , Triticum , Contaminantes Químicos del Agua/análisis
12.
Environ Pollut ; 337: 122637, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769707

RESUMEN

Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Humanos , Hierro/análisis , Antimonio/análisis , Electrones , Adsorción , Carbón Orgánico , Agua , Estrés Oxidativo , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 893: 164961, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37336405

RESUMEN

Biochar plays a crucial role in enhancing soil ecological functions and productivity, and mitigating environmental pollution. Despite the available studies conducted through high-throughput sequencing to understand the effects of biochar on soil bacterial diversity and richness, a comprehensive understanding remains elusive. Our global meta-analysis addresses this knowledge gap, incorporating 473 pairs of observations from 84 studies to assess soil bacterial diversity and richness response to biochar addition. We found that biochar application increased bacterial Shannon and Chao1 indices by 0.99 % and 6.45 % respectively. However, these positive effects were context-dependent, especially concerning bacterial diversity. Through aggregated boosted trees analysis, we determined that soil characteristics (including soil organic carbon and nitrogen contents, soil pH, and soil texture) had a more significant influence than biochar properties, experimental conditions, or climatic factors on soil bacterial diversity and richness post biochar addition. In particular, the soil carbon to nitrogen ratio stood out as the leading factor influencing the bacterial Shannon and Chao1 indices following biochar addition. Our findings offer new insights into biochar's influence on soil bacterial activity, taking into account biochar-mediated spatiotemporal variation. This information is pivotal for optimizing biochar characteristics and application to improve soil biological health.


Asunto(s)
Carbono , Suelo , Suelo/química , Microbiología del Suelo , Carbón Orgánico , Bacterias , Nitrógeno/análisis
14.
Sci Total Environ ; 890: 164070, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37196949

RESUMEN

For three years, a large amount of manufactured pollutants such as plastics, antibiotics and disinfectants has been released into the environment due to COVID-19. The accumulation of these pollutants in the environment has exacerbated the damage to the soil system. However, since the epidemic outbreak, the focus of researchers and public attention has consistently been on human health. It is noteworthy that studies conducted in conjunction with soil pollution and COVID-19 represent only 4 % of all COVID-19 studies. In order to enhance researchers' and the public awareness of the seriousness on the COVID-19 derived soil pollution, we propose the viewpoint that "pandemic COVID-19 ends but soil pollution increases" and recommend a whole-cell biosensor based new method to assess the environmental risk of COVID-19 derived pollutants. This approach is expected to provide a new way for environmental risk assessment of soils affected by contaminants produced from the pandemic.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Humanos , COVID-19/epidemiología , Pandemias , Contaminación Ambiental/análisis , Suelo , Plásticos , Medición de Riesgo
15.
Environ Monit Assess ; 195(3): 438, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862255

RESUMEN

Untreated wastewater is routinely used for agricultural activities in water-stressed regions, thereby causing severe ecological risks by various pollutants. Hence, management strategies are needed to cope with the environmental issues related to wastewater use in agriculture. This pot study evaluates the effect of mixing either freshwater (FW) or groundwater (GW) with sewage water (SW) on the buildup of potentially toxic elements (PTEs) in soil and maize crop. Results revealed that SW of Vehari contains high levels of Cd (0.08 mg L-1) and Cr (2.3 mg L-1). Mixing of FW and GW with SW increased soil contents of As (22%) and decreased Cd (1%), Cu (1%), Fe (3%), Mn (9%), Ni (9%), Pb (10%), and Zn (4%) than SW "alone" treatment. Risk indices showed high-degree of soil-contamination and very-high ecological risks. Maize accumulated considerable concentrations of PTEs in roots and shoot with bioconcentration factor > 1 for Cd, Cu, and Pb and transfer factor > 1 for As, Fe, Mn, and Ni. Overall, mixed treatments increased plant contents of As (118%), Cu (7%), Mn (8%), Ni (55%), and Zn (1%), while decreased those of Cd (7%), Fe (5%), and Pb (1%) compared to SW "alone" treatments. Risk indices predicted possible carcinogenic risks to cow (CR 0.003 > 0.0001) and sheep (CR 0.0121 > 0.0001) due to consumption of maize fodder containing PTEs. Hence, to minimize possible environmental/health hazards, mixing of FW and GW with SW can be an effective strategy. However, the recommendation greatly depends on the composition of mixing waters.


Asunto(s)
Suelo , Aguas Residuales , Bovinos , Femenino , Animales , Ovinos , Zea mays , Cadmio , Plomo , Monitoreo del Ambiente , Agua Dulce , Agua , Aguas del Alcantarillado
16.
Environ Geochem Health ; 45(8): 5599-5618, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32875481

RESUMEN

Freshwater shortage and its contamination with various types of pollutants are becoming the most alarming issues worldwide due to impacts on socioeconomic values. Considering an increasing freshwater scarcity, it is imperative for the growers, particularly in semiarid and arid areas, to use wastewater for crop production. Wastewaters generally contain numerous essential inorganic and organic nutrients which are considered necessary for plant metabolism. Besides, this practice provokes various hygienic, ecological and health concerns due to the occurrence of toxic substances such as heavy metals. Pakistan nowadays faces a severe freshwater scarcity. Consequently, untreated wastewater is used routinely in the agriculture sector. In this review, we have highlighted the negative and positive affectivity of wastewater on the chemical characteristics of the soil. This review critically delineates toxic metal accumulation in soil and their possible soil-plant-human transfer. We have also estimated and deliberated possible health hazards linked with the utilization of untreated city waste effluents for the cultivation of food/vegetable crops. Moreover, we carried out a multivariate analysis of data (144 studies of wastewater crop irrigation in Pakistan) to trace out common trends in published data. We have also compared the limit values of toxic metals in irrigation water, soil and plants. Furthermore, some viable solutions and future viewpoints are anticipated taking into account the on-ground situation in Pakistan-such as planning and sanitary matters, remedial/management technologies, awareness among local habitants (especially farmers) and the role of the government, NGOs and pertinent stakeholders. The data are supported by 13 tables and 7 figures.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Aguas Residuales , Pakistán , Riego Agrícola , Contaminantes del Suelo/análisis , Agricultura , Suelo/química , Metales Pesados/análisis , Medición de Riesgo
17.
Environ Geochem Health ; 45(8): 5703-5712, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33236273

RESUMEN

Arsenic (As) is a highly toxic metalloid. High As levels have been recorded in groundwater aquifers at a global scale. This study investigated As level in groundwater of District Vehari and assessed the potential of different agricultural by-products (sugarcane bagasse, cottonseed hulls, soybean hulls, corncobs and rice husk) to remove As from water. The study was carried out in two steps. In the first step, a total of 38 groundwater samples were obtained from Vehari. Groundwater samples were analyzed for total As contents and physicochemical parameters. Results indicated that As content ranged from below detection limit to 49 µg/L in the groundwater samples. The values of hazard quotient and cancer risk were up to 1.5 and 0.0004, respectively, which delineated severe risk of As poisoning. During the second step, six As-contaminated groundwater samples (total As contents: 49, 40, 29, 24, 18, 16 µg/L) were selected to remove As using agricultural by-products. Furthermore, four As solutions (200, 100, 50 and 25 µg/L) were prepared in the laboratory. Results revealed that corncobs and soybean hulls removed, respectively, 98% and 71% As from aqueous mediums after 120 min. Moreover, agricultural by-products were less effective in removing As from groundwater samples than synthetic solutions. The adsorption/removal capacity of by-products was lower at low initial As concentration compared to high initial levels, which needs further studies to explore the underlying mechanisms. Overall, the As removal efficiency of agriculture by-products differed significantly with respect to initial As level, contamination category, type of agricultural by-products and interaction duration. Therefore, these aspects need to be optimized before the possible use of an agricultural by-product as a potential biosorbent.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Saccharum , Contaminantes Químicos del Agua , Arsénico/análisis , Celulosa , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo/métodos , Agua Subterránea/química , Agricultura
18.
Int J Phytoremediation ; 25(9): 1155-1164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355569

RESUMEN

In this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.2. Freundlich model provided the best fit (R2 = up to 0.98) for As(III) and As(V) sorption data of all the sorbents, notably for nZVZn. The pseudo-second order model well-described kinetics of As(III) and As(V) (R2 = 0.99) sorption on all the sorbents. The desorption experiments demonstrated that the As removal efficiency, up to the third sorption/desorption cycle, was in the order of nZVZn ∼ BC/HA-alginate (88%) > BC/nZVZn (84%). The Fourier transform infrared spectroscopy depicted that the -OH, -COOH, Zn-O and Zn-OH surface functional groups were responsible for the sorption of As(III) or As(V) on the sorbents investigated here. This study highlights that removal of As species from water by BC/nZVZn composite can be compared with nZVZn, suggesting that integrating BC with nZVZn could efficiently remove As from As-contaminated drinking water.


This is the first study to explore the potential of a newly prepared sugarcane bagasse biochar/nano-zerovalent zinc (BC/nZVZn) based composite for the removal of inorganic arsenic (As) species from water. The results indicated high percentage removal of As(III) and As(V) from water by BC/nZVZn that were comparable to nZVZn alone.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Zinc , Contaminantes Químicos del Agua/química , Adsorción , Purificación del Agua/métodos , Biodegradación Ambiental , Carbón Orgánico/química , Agua , Cinética
19.
Environ Geochem Health ; 45(12): 9017-9028, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36175704

RESUMEN

Water contamination by arsenic (As) is widespread and is posing serious health threats globally. Hence, As removal techniques/adsorbents need to be explored to minimize potentials hazards of drinking As-contaminated waters. A column scale sorption experiment was performed to assess the potential of three biosorbents (tea waste, wheat straw and peanut shells) to remove As (50, 100, 200 and 400 µg L-1) from aqueous medium at a pH range of 5-8. The efficiency of agricultural biosorbents to remove As varies greatly regarding their type, initial As concentration in water and solution pH. It was observed that all of the biosorbents efficiently removed As from water samples. The maximum As removal (up to 92%) was observed for 400 µg L-1 initial As concentration. Noticeably, at high initial As concentrations (200 and 400 µg L-1), low pH (5 and 6) facilitates As removal. Among the three biosorbents, tea waste biosorbent showed substantial ability to minimize health risks by removing As (up to 92%) compared to peanut shells (89%) and wheat straw (88%). Likewise, the values of evaluated risk parameters (carcinogenic and non-carcinogenic risk) were significantly decreased (7-92%: average 66%) after biosorption experiment. The scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray and X-ray diffraction analyses confirmed the potential of biosorbents to remediate As via successful loading of As on their surfaces. Hence, it can be concluded that synthesized biosorbents exhibit efficient and ecofriendly potential for As removal from contaminated water to minimize human health risk.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Arsénico/análisis , Adsorción , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Agua , Medición de Riesgo , , Cinética , Concentración de Iones de Hidrógeno
20.
Environ Geochem Health ; 45(2): 507-523, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35022880

RESUMEN

Climate change is a global challenge that is accelerated by contamination with hazardous substances like arsenic (As), posing threat to the agriculture, ecosystem and human health. Here, we explored the impact of various ameliorants on geochemical distribution of As in two soils with contrasting textures (sandy clay loam (Khudpur Village) and clay loam (Mattital Village)) under paddy soil conditions and their influence on the CO2-carbon efflux. The exchangeable As pool in clay loam soil increased as: lignite (0.4%) < biogas slurry (6%) < cow dung (9%), and < biochar (20%). However, in the sandy clay loam soil exchangeable soil As pool was found to be maximum with farmyard manure followed by biogas slurry, biochar and cow dung (17%, 14%, 13% and 7%, respectively). Interestingly, in the sandy clay loam soil the percentage As distribution in organic fraction was: biochar (38%) > cow dung (33%) > biogas slurry (23%) > sugarcane bagasse (22%) > farmyard manure (21%) that was higher compared to the clay loam soil (< 6% for all the amendments). In addition to the highest As immobilization by biochar in sandy clay loam soil, it also led to the lowest CO2-carbon efflux (1470 CO2-C mg kg-1) among all the organic/inorganic amendments. Overall, the current study advances our understanding on the pivotal role of organic amendments, notably biochar, in immobilizing As under paddy soil conditions with low (CO2) carbon loss, albeit it is dependent on soil and ameliorant types.


Asunto(s)
Arsénico , Saccharum , Humanos , Suelo/química , Carbono , Arcilla/química , Celulosa , Dióxido de Carbono , Estiércol , Ecosistema , Biocombustibles , Carbón Orgánico/química , Arena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA