Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(1): e2726, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36053865

RESUMEN

We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993-2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades.


Asunto(s)
Estrigiformes , Animales , Probabilidad , Reproducción , Oregon , Washingtón
2.
PLoS One ; 17(11): e0276762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36318526

RESUMEN

Athletic performance data are modeled in an effort to better understand the relationship between both hours spent training and a measurement of "commitment" to that training, and improvements in performance. Both increased training time and greater commitment were predicted to produce larger increases in performance improvement, and commitment was predicted to be the more important determinant of improvement. The performance of 108 soccer players (ages 9-18) was quantified over a 10-week training program. Hours spent training ranged from 16 to 90 during the course of the study, while commitment scores ranged from 0.55 to 2.00, based on a scale from 0.00 to 2.40. A model selection approach was used to discriminate among models specifying relationships between training hours and improvement, and commitment and improvement. Despite considerable variability in the data, results provided strong evidence for an increase in performance improvement with both training hours and commitment score. The best models for hours and commitment were directly compared by computing an evidence ratio of 5799, indicating much stronger evidence favoring the model based on commitment. Results of analyses such as these go beyond anecdotal experience in an effort to establish a formal evidentiary basis for athletic training programs.


Asunto(s)
Rendimiento Atlético , Fútbol , Adolescente , Humanos , Niño , Atletas
3.
PLoS Comput Biol ; 17(10): e1009518, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710096

RESUMEN

Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which rely on widely administered frequent and rapid diagnostics to identify and isolate infected individuals, could be a potentially less disruptive management strategy, particularly where vaccine access is limited. In this paper, we assess the extent to which mass testing and isolation strategies can reduce reliance on socially costly non-pharmaceutical interventions, such as distancing and shutdowns. We develop a multi-compartmental model of SARS-CoV-2 transmission incorporating both preventative non-pharmaceutical interventions (NPIs) and testing and isolation to evaluate their combined effect on public health outcomes. Our model is designed to be a policy-guiding tool that captures important realities of the testing system, including constraints on test administration and non-random testing allocation. We show how strategic changes in the characteristics of the testing system, including test administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs without compromising public health outcomes in the future. The lowest NPI levels are possible only when many tests are administered and test delays are short, given limited immunity in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing program to identify and isolate unreported, asymptomatic infections. Changes in NPIs, including the intensity of lockdowns and stay at home orders, should be coordinated with increases in testing to ensure epidemic control; otherwise small additional lifting of these NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly, our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for the flexible design of combined interventions based on social context, and inform future cost-benefit analyses to identify efficient pandemic management strategies.


Asunto(s)
COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2 , COVID-19/epidemiología , Prueba de COVID-19/métodos , Control de Enfermedades Transmisibles/métodos , Biología Computacional , Simulación por Computador , Análisis Costo-Beneficio , Humanos , Modelos Biológicos , Distanciamiento Físico
4.
Ecol Appl ; 31(7): e02397, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212448

RESUMEN

Poaching is a pervasive threat to wildlife, yet quantifying the direct effect of poaching on wildlife is rarely possible because both wildlife and threat data are infrequently collected concurrently. In this study, we used poaching data collected through the Management Information System (MIST) and wildlife camera trap data collected by the Tropical Ecology Assessment and Monitoring (TEAM) network from 2014 to 2017 in Volcanoes National Park, Rwanda. We implemented co-occurrence multi-season occupancy models that accounted for imperfect detection to investigate the effect of poaching on initial occupancy, colonization, and extinction of five mammal species. Specifically, we focused on two species of conservation concern (mountain gorilla [Gorilla beringei beringei] and golden monkey [Cercopithecus mitis kandti]), and three species targeted by poachers (black-fronted duiker [Cephalophus nigrifrons], bushbuck [Tragelaphus scriptus], and African buffalo [Syncerus caffer]). We found that the probability of local extinction was highest in sites with poaching activity for golden monkey and bushbuck. In addition, the probability of initial occupancy for golden monkey was highest in sites without poaching activity. We only found weak evidence of effects of poaching on parameters governing the occupancy dynamics of the other species. All species showed evidence of poaching presence affecting the probability of detection of the wildlife species. This is the first study to our knowledge to combine direct threat observations from ranger-based monitoring data with camera trap wildlife observations to quantify the effect of poaching on wildlife. Given the widespread collection of ranger-based monitoring and camera trap data, our approach is broadly applicable to numerous protected areas and has the potential to significantly improve conservation management. Specifically, the relationship between poaching activity and wildlife population dynamics can be combined with information on the relationship between ranger patrols and poaching activity to develop models useful for making wise decisions about ranger patrol deployment.


Asunto(s)
Animales Salvajes , Gorilla gorilla , Agricultura , Animales , Conservación de los Recursos Naturales , Mamíferos , Parques Recreativos
5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34282032

RESUMEN

Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before-after control-impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species.


Asunto(s)
Distribución Animal , Especies Introducidas , Estrigiformes/fisiología , Animales , Ecosistema , Noroeste de Estados Unidos , Dinámica Poblacional
6.
PLoS Biol ; 19(6): e3001307, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138840

RESUMEN

More than 1.6 million Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) tests were administered daily in the United States at the peak of the epidemic, with a significant focus on individual treatment. Here, we show that objective-driven, strategic sampling designs and analyses can maximize information gain at the population level, which is necessary to increase situational awareness and predict, prepare for, and respond to a pandemic, while also continuing to inform individual treatment. By focusing on specific objectives such as individual treatment or disease prediction and control (e.g., via the collection of population-level statistics to inform lockdown measures or vaccine rollout) and drawing from the literature on capture-recapture methods to deal with nonrandom sampling and testing errors, we illustrate how public health objectives can be achieved even with limited test availability when testing programs are designed a priori to meet those objectives.


Asunto(s)
Monitoreo Epidemiológico , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Prueba de COVID-19 , Humanos , Pandemias/prevención & control , Salud Pública , Asignación de Recursos , SARS-CoV-2/aislamiento & purificación , Vigilancia de Guardia , Estados Unidos/epidemiología
8.
Ecol Evol ; 9(4): 1985-2003, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847087

RESUMEN

Understanding the relative impact of climate change and land cover change on changes in avian distribution has implications for the future course of avian distributions and appropriate management strategies. Due to the dynamic nature of climate change, our goal was to investigate the processes that shape species distributions, rather than the current distributional patterns. To this end, we analyzed changes in the distribution of Eastern Wood Pewees (Contopus virens) and Red-eyed Vireos (Vireo olivaceus) from 1997 to 2012 using Breeding Bird Survey data and dynamic correlated-detection occupancy models. We estimated the local colonization and extinction rates of these species in relation to changes in climate (hours of extreme temperature) and changes in land cover (amount of nesting habitat). We fit six nested models to partition the deviance explained by spatial and temporal components of land cover and climate. We isolated the temporal components of environmental variables because this is the essence of global change. For both species, model fit was significantly improved when we modeled vital rates as a function of spatial variation in climate and land cover. Model fit improved only marginally when we added temporal variation in climate and land cover to the model. Temporal variation in climate explained more deviance than temporal variation in land cover, although both combined only explained 20% (Eastern Wood Pewee) and 6% (Red-eyed Vireo) of temporal variation in vital rates. Our results showing a significant correlation between initial occupancy and environmental covariates are consistent with biological expectation and previous studies. The weak correlation between vital rates and temporal changes in covariates indicated that we have yet to identify the most relevant components of global change influencing the distributions of these species and, more importantly, that spatially significant covariates are not necessarily driving temporal shifts in avian distributions.

9.
Ecol Evol ; 9(24): 13991-14004, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31938497

RESUMEN

Many published studies in ecological science are viewed as stand-alone investigations that purport to provide new insights into how ecological systems behave based on single analyses. But it is rare for results of single studies to provide definitive results, as evidenced in current discussions of the "reproducibility crisis" in science. The key step in science is the comparison of hypothesis-based predictions with observations, where the predictions are typically generated by hypothesis-specific models. Repeating this step allows us to gain confidence in the predictive ability of a model, and its corresponding hypothesis, and thus to accumulate evidence and eventually knowledge. This accumulation may occur via an ad hoc approach, via meta-analyses, or via a more systematic approach based on the anticipated evolution of an information state. We argue the merits of this latter approach, provide an example, and discuss implications for designing sequences of studies focused on a particular question. We conclude by discussing current data collection programs that are preadapted to use this approach and argue that expanded use would increase the rate of learning in ecology, as well as our confidence in what is learned.

10.
PLoS One ; 12(7): e0179489, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28746414

RESUMEN

Disentangling the role of competition in regulating the distribution of sympatric species can be difficult because species can have different habitat preferences or time use that introduce non-random patterns that are not related to interspecific interactions. We adopted a multi-step approach to systematically incorporate habitat preferences while investigating the co-occurrence of two presumed competitors, morphologically similar, and closely related ground-dwelling birds: the brown tinamou (Crypturellus obsoletus) and the tataupa tinamou (C. tataupa). First, we used single-species occupancy models to identify the main landscape characteristics affecting site occupancy, while accounting for detection probability. We then used these factors to control for the effect of habitat while investigating species co-occurrence. In addition, we investigated species present-time partitioning by measuring the degree of overlap in their activity time. Both species were strictly diurnal and their activity time highly overlapped (i.e., the species are not present-time partitioning). The distribution of the two species varied across the landscape, and they seemed to occupy opposite portions of the study area, but co-occurrence models and species interaction factors suggested that the tinamous have independent occupancy and detection. In addition, co-occurrence models that accounted for habitat performed better than models without habitat covariates. The observed co-occurrence pattern is more likely related to habitat preferences, wherein species segregated by elevation. These results provide evidence that habitat characteristics can play a bigger role than interspecific interactions in regulating co-existence of some species. Therefore, exploring habitat preferences while analyzing co-occurrence patterns is essential, in addition to being a feasible approach to achieve more accurate estimation of parameters reflecting species interactions. Occupancy models can be a valuable tool in such modeling.


Asunto(s)
Aves/fisiología , Conducta Competitiva/fisiología , Ecosistema , Simpatría/fisiología , Algoritmos , Animales , Aves/clasificación , Brasil , Conducta Alimentaria/fisiología , Geografía , Modelos Teóricos , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA