Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nature ; 628(8007): 355-358, 2024 Apr.
Article En | MEDLINE | ID: mdl-38030722

Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.


Insecticides , Pesticides , Bees , Animals , Pesticides/toxicity , Insecticides/toxicity , Neonicotinoids/toxicity , Agriculture , Pollen
2.
Nat Ecol Evol ; 7(4): 547-556, 2023 04.
Article En | MEDLINE | ID: mdl-36849537

Widespread contamination of ecosystems with pesticides threatens non-target organisms. However, the extent to which life-history traits affect pesticide exposure and resulting risk in different landscape contexts remains poorly understood. We address this for bees across an agricultural land-use gradient based on pesticide assays of pollen and nectar collected by Apis mellifera, Bombus terrestris and Osmia bicornis, representing extensive, intermediate and limited foraging traits. We found that extensive foragers (A. mellifera) experienced the highest pesticide risk-additive toxicity-weighted concentrations. However, only intermediate (B. terrestris) and limited foragers (O. bicornis) responded to landscape context-experiencing lower pesticide risk with less agricultural land. Pesticide risk correlated among bee species and between food sources and was greatest in A. mellifera-collected pollen-useful information for future postapproval pesticide monitoring. We provide foraging trait- and landscape-dependent information on the occurrence, concentration and identity of pesticides that bees encounter to estimate pesticide risk, which is necessary for more realistic risk assessment and essential information for tracking policy goals to reduce pesticide risk.


Pesticides , Bees , Animals , Pesticides/analysis , Ecosystem , Agriculture , Pollen/chemistry , Risk Assessment
3.
Am J Bot ; 108(11): 2196-2207, 2021 11.
Article En | MEDLINE | ID: mdl-34622948

PREMISE: Many animals provide ecosystem services in the form of pollination including honeybees, which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators. METHODS: We conducted a hierarchical meta-analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask three questions: (1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE? (2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors? (3) Is there a correlation between visitation frequency and SVE? RESULTS: Honeybees were significantly less effective than the most effective non-honeybee pollinators but were as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent. CONCLUSIONS: Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators, and safeguarding pollination will benefit from conservation of non-honeybee taxa.


Ecosystem , Pollination , Animals , Bees , Flowers , Plants
4.
Nat Commun ; 12(1): 5310, 2021 09 07.
Article En | MEDLINE | ID: mdl-34493729

Nutritional stability - a food system's capacity to provide sufficient nutrients despite disturbance - is an important, yet challenging to measure outcome of diversified agriculture. Using 55 years of data across 184 countries, we assemble 22,000 bipartite crop-nutrient networks to quantify nutritional stability by simulating crop and nutrient loss in a country, and assess its relationship to crop diversity across regions, over time and between imports versus in country production. We find a positive, saturating relationship between crop diversity and nutritional stability across countries, but also show that over time nutritional stability remained stagnant or decreased in all regions except Asia. These results are attributable to diminishing returns on crop diversity, with recent gains in crop diversity among crops with fewer nutrients, or with nutrients already in a country's food system. Finally, imports are positively associated with crop diversity and nutritional stability, indicating that many countries' nutritional stability is market exposed.


Crops, Agricultural/chemistry , Food Security/statistics & numerical data , Food Supply/statistics & numerical data , Models, Statistical , Agriculture/organization & administration , Commerce/statistics & numerical data , Crops, Agricultural/economics , Crops, Agricultural/growth & development , Food Security/economics , Humans , Internationality
5.
Ecol Appl ; 31(3): e02260, 2021 04.
Article En | MEDLINE | ID: mdl-33185959

Spatial aspects of connectivity have received considerable attention from ecologists and conservationists, yet temporal connectivity, the periodic linking of habitats, plays an equally important, but largely overlooked role. Different biological and biophysical attributes of ecosystems underpin temporal connectivity, but here we focus on resource continuity, the uninterrupted availability of foraging sites. We test the response of pollinators to resource continuity at community, population, and individual levels using a novel natural experiment consisting of farms with either single or sequential cropping systems. We found significant effects at the population level; colony density of an important crop pollinator (Bombus impatiens L.) was greater when crop floral resources were continuously available. However, we did not find significant effects at the community or individual level; wild bee abundance, diversity and body size did not respond to resource continuity. Raspberry farms with greater early season resources provided by blueberry had greater bumble bee populations, suggesting beneficial effects on resource availability due to crop diversity. Better understanding the impact of resource continuity via crop diversity on broader patterns of biodiversity is essential for the co-management of biodiversity and ecosystem services.


Blueberry Plants , Pollination , Animals , Bees , Biodiversity , Ecosystem , Seasons
6.
Glob Chang Biol ; 26(2): 380-391, 2020 02.
Article En | MEDLINE | ID: mdl-31621147

Natural hazards are naturally occurring physical events that can impact human welfare both directly and indirectly, via shocks to ecosystems and the services they provide. Animal-mediated pollination is critical for sustaining agricultural economies and biodiversity, yet stands to lose both from present exposure to natural hazards, and future climate-driven shifts in their distribution, frequency, and intensity. In contrast to the depth of knowledge available for anthropogenic-related threats, our understanding of how naturally occurring extreme events impact pollinators and pollination has not yet been synthesized. We performed a systematic review and meta-analysis to examine the potential impacts of natural hazards on pollinators and pollination in natural and cultivated systems. From a total of 117 studies (74% of which were observational), we found evidence of community and population-level impacts to plants and pollinators from seven hazard types, including climatological (extreme heat, fire, drought), hydrological (flooding), meteorological (hurricanes), and geophysical (volcanic activity, tsunamis). Plant and pollinator response depended on the type of natural hazard and level of biological organization observed; 19% of cases reported no significant impact, whereas the majority of hazards held consistent negative impacts. However, the effects of fire were mixed, but taxa specific; meta-analysis revealed that bee abundance and species richness tended to increase in response to fire, differing significantly from the mainly negative response of Lepidoptera. Building from this synthesis, we highlight important future directions for pollination-focused natural hazard research, including the need to: (a) advance climate change research beyond static "mean-level" changes by better incorporating "shock" events; (b) identify impacts at higher levels of organization, including ecological networks and co-evolutionary history; and (c) address the notable gap in crop pollination services research-particularly in developing regions of the world. We conclude by discussing implications for safeguarding pollination services in the face of global climate change.


Biodiversity , Fires , Pollination , Animals , Bees , Climate Change , Ecosystem , Humans
7.
Ecol Lett ; 23(2): 326-335, 2020 Feb.
Article En | MEDLINE | ID: mdl-31797535

Supporting ecosystem services and conserving biodiversity may be compatible goals, but there is concern that service-focused interventions mostly benefit a few common species. We use a spatially replicated, multiyear experiment in four agricultural settings to test if enhancing habitat adjacent to crops increases wild bee diversity and abundance on and off crops. We found that enhanced field edges harbored more taxonomically and functionally abundant, diverse, and compositionally different bee communities compared to control edges. Enhancements did not increase the abundance or diversity of bees visiting crops, indicating that the supply of pollination services was unchanged following enhancement. We find that actions to promote crop pollination improve multiple dimensions of biodiversity, underscoring their conservation value, but these benefits may not be spilling over to crops. More work is needed to identify the conditions that promote effective co-management of biodiversity and ecosystem services.


Biodiversity , Ecosystem , Agriculture , Animals , Bees , Crops, Agricultural , Pollination
...