Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 615: 121498, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35065207

RESUMEN

This study evaluated the ability of different sweeteners to improve dissolution and to form and stabilize supersaturated solutions of griseofulvin (GSF), comparing a eutectic mixture and amorphous formulations. Among the sweeteners tested, only saccharin (SAC) was able to delay drug precipitation in buffer (area under the curve (AUC) increase of 40%) and in fasted state simulated intestinal Fluid (FaSSIF, AUC increase of 20%) compared to pure media. GSF solubility was not affected by the presence of isomalt (ISO), maltitol (MALT) and SAC in buffer pH 6.5 but was reduced in FaSSIF. The quenched cooled amorphous formulation GSF-SAC QC -with the carrier that forms a eutectic mixture with GSF -provided higher drug release in buffer than amorphous formulations with ISO and MALT. In FaSSIF, SAC slightly changed the microenvironment's hydrophobicity (observed in fluorescence studies) and both its amorphous formulation (GSF-SAC QC) and its eutectic mixture (GSF-SAC EM) dissolved at concentrations above drug solubility, achieving supersaturation ratio (SR, Eq. (1)) of 4.14 and 3.15, respectively. The main finding of this study was that for the first time a eutectic mixture acted as a supersaturating drug delivery system, emphasizing the importance of investigating EMs during preformulation studies of fast-crystallizing poorly water-soluble drugs.


Asunto(s)
Griseofulvina , Sacarina , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Solubilidad
2.
Carbohydr Polym ; 209: 207-214, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30732801

RESUMEN

Solid dispersions (SDs) of chlorthalidone (CTD) are promising systems to enhance drug dissolution rate, generate and maintain drug supersaturation levels in gastrointestinal fluids. In this work, SDs of CTD were prepared by spray drying using sodium alginate (SA) as carrier. Six formulations were prepared, varying the drug loading and composition, through the combination of SA with surfactants (sodium lauryl sulfate (SLS) or polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (SOL)). In all SDs, except when SA was used alone at low drug loading, CTD was in the amorphous form. At sink conditions, all SDs showed a faster dissolution rate than the crystalline drug. At non-sink conditions, the SDs prepared with SA and SLS at low drug loading exhibited the best performance to maintain supersaturating drug levels. All SDs, except those prepared with SA alone or SA-SLS at high drug loading, presented no drug recrystallization after 34 months of storage.


Asunto(s)
Alginatos/química , Clortalidona/química , Portadores de Fármacos/química , Liberación de Fármacos , Tamaño de la Partícula , Polimerizacion , Solubilidad , Tensoactivos/química
3.
Eur J Pharm Sci ; 111: 142-152, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28964949

RESUMEN

Supersaturating drug delivery systems (SDDS), as solid dispersions (SDs), stand out among strategies to enhance bioavailability of poorly soluble drugs. After oral administration, their dissolution in gastrointestinal fluids often leads to supersaturation, which drives to a rapid and sustained absorption. Polymers and surfactants play important roles in SDs through inhibiting precipitation caused by transitions from amorphous into crystalline form, in supersaturated solutions, and also through improving SDs physical stability. Novel chlorthalidone SDs, a BCS IV drug, were developed using polymeric and non-polymeric carriers, specially a polymer-surfactant complex. SDs drug releases were evaluated using sink and non-sink conditions in water and biorelevant medium. Their physical stability was also monitored under different storage conditions. Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (SOL), sodium lauryl sulfate (SLS) and a combination of both showed promising results in apparent solubility studies, and therefore they were selected to compose the spray dried SDs. Dissolution studies demonstrated the SOL-SLS complex potential for providing chlorthalidone fast release (>80% in 15min), producing and maintaining in vitro supersaturation. This formulation comprising high drug loading (75%) reached a high supersaturation degree under non-sink condition (up to 6-fold the equilibrium solubility) once maintained for 6h in biorelevant medium. In addition, this SD presented better physical stability when compared to the chlorthalidone neat amorphous. The SOL-SLS complex impacts positively on chlorthalidone release and physical stability, highlighting its potential as carrier in SDDS of a poorly soluble drug.


Asunto(s)
Antihipertensivos/administración & dosificación , Clortalidona/administración & dosificación , Portadores de Fármacos/química , Polietilenglicoles/química , Polivinilos/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Estabilidad de Medicamentos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA