Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Malar J ; 10: 14, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255444

RESUMEN

BACKGROUND: Plasmodium falciparum sporozoites injected by mosquitoes into the blood rapidly enter liver hepatocytes and undergo pre-erythrocytic developmental schizogony forming tens of thousands of merozoites per hepatocyte. Shortly after hepatocyte invasion, the parasite starts to produce Liver Stage Antigen-1 (LSA-1), which accumulates within the parasitophorous vacuole surrounding the mass of developing merozoites. The LSA-1 protein has been described as a flocculent mass, but its role in parasite development has not been determined. METHODS: Recombinant N-terminal, C-terminal or a construct containing both the N- and C- terminal regions flanking two 17 amino acid residue central repeat sequences (LSA-NRC) were subjected to in vitro modification by tissue transglutaminase-2 (TG2) to determine if cross-linking occurred. In addition, tissue sections of P. falciparum-infected human hepatocytes were probed with monoclonal antibodies to the isopeptide ε-(γ-glutamyl)lysine cross-bridge formed by TG2 enzymatic activity to determine if these antibodies co-localized with antibodies to LSA-1 in the growing liver schizonts. RESULTS: This study identified a substrate motif for (TG2) and a putative casein kinase 2 phosphorylation site within the central repeat region of LSA-1. The function of TG2 is the post-translational modification of proteins by the formation of a unique isopeptide ε-(γ-glutamyl)lysine cross-bridge between glutamine and lysine residues. When recombinant LSA-1 protein was crosslinked in vitro by purified TG2 in a calcium dependent reaction, a flocculent mass of protein was formed that was highly resistant to degradation. The cross-linking was not detectably affected by phosphorylation with plasmodial CK2 in vitro. Monoclonal antibodies specific to the very unique TG2 catalyzed ε- lysine cross-bridge co-localized with antibodies to LSA-1 in infected human hepatocytes providing visual evidence that LSA-1 was cross-linked in vivo. CONCLUSIONS: While the role of LSA-1 is still unknown these results suggest that it becomes highly cross-linked which may aid in the protection of the parasite as it develops.


Asunto(s)
Antígenos de Protozoos/metabolismo , Interacciones Huésped-Parásitos , Hígado/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Transglutaminasas/metabolismo , Animales , Humanos , Hígado/patología , Ratones , Ratones SCID , Microscopía Fluorescente , Proteína Glutamina Gamma Glutamiltransferasa 2
2.
Hum Mol Genet ; 18(9): 1556-65, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19208651

RESUMEN

An extensive protein-protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin-proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin-1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxia-linked proteins.


Asunto(s)
Ataxia/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Ataxia/genética , Ataxina-1 , Ataxinas , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Ratas Wistar , Alineación de Secuencia
3.
Int J Biochem Cell Biol ; 40(12): 2914-26, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18674634

RESUMEN

Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock. In this paper we investigated the possible functions of the P. falciparum heat shock protein DnaJ homologue Pfj4, a type II Hsp40 protein. We analysed the ability of Pfj4 to functionally replace Escherichia coli Hsp40 proteins in a dnaJ cbpA mutant strain. Western analysis on cellular fractions of P. falciparum-infected erythrocytes revealed that Pfj4 expression increased upon heat shock. Localisation studies using immunofluorescence and immuno-electron microscopy suggested that Pfj4 and P. falciparum Hsp70, PfHsp70-1, were both localised to the parasites nucleus and cytoplasm. In some cases, Pfj4 was also detected in the erythrocyte cytoplasm of infected erythrocytes. Immunoprecipitation studies and size exclusion chromatography indicated that Pfj4 and PfHsp70-1 may directly or indirectly interact. Our results suggest a possible involvement of Pfj4 together with PfHsp70-1 in cytoprotection, and therefore, parasite survival inside the erythrocyte.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/metabolismo , Calor , Plasmodium falciparum/metabolismo , Animales , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Plasmodium falciparum/genética
4.
Protein Expr Purif ; 46(1): 1-15, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16199180

RESUMEN

Molecular chaperones are integral components of the cellular machinery involved in ensuring correct protein folding and the continued maintenance of protein structure. An understanding of these ubiquitous molecules is key to finding cures to protein misfolding diseases such as Alzheimer's and Creutzfeldt-Jacob diseases. In addition, further understanding of chaperones will enhance our comprehension of the way the body copes with the environmental stresses that humans encounter daily. Our laboratory and our collaborators specialize in the production and characterization of chaperones from a wide variety of sources in order to gain a fuller understanding of how chaperones function in the cell. In this review, we primarily use the Hsp70/Hsp40 chaperone pair as an example to discuss recent advances in technology and reductions in cost that lend themselves to chaperone purification from both native and recombinant sources. Common assays to assess purified chaperone activity are also discussed.


Asunto(s)
Chaperonas Moleculares/química , Chaperonas Moleculares/aislamiento & purificación , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Retículo Endoplásmico/metabolismo , Enzimas/química , Enzimas/aislamiento & purificación , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/metabolismo
5.
Protein Sci ; 14(7): 1697-709, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15987899

RESUMEN

Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Escherichia coli/fisiología , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Especificidad por Sustrato
6.
FEBS Lett ; 543(1-3): 148-53, 2003 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12753923

RESUMEN

The removal of either the PsbU or PsbV protein has been investigated in a cyanobacterial DeltaPsbO strain and in mutants carrying deletions or substitutions in lumen-exposed domains of CP47. These experiments have demonstrated a functional interaction between the PsbU protein and photosystem II (PSII) in the absence of the PsbO subunit. The control:DeltaPsbO:DeltaPsbU strain assembled PSII centers at pH 7.5 but did not evolve oxygen; however, photoautotrophic growth was restored at pH 10.0. In addition, several CP47 mutants, lacking extrinsic proteins, were obligate photoheterotrophs at pH 7.5 but photoautotrophic at pH 10.0, whereas other strains remained photoheterotrophs at alkaline pH.


Asunto(s)
Proteínas Bacterianas , Cianobacterias/crecimiento & desarrollo , Complejos de Proteína Captadores de Luz , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II , Cianobacterias/genética , Cianobacterias/metabolismo , Grupo Citocromo c/genética , Grupo Citocromo c/fisiología , Concentración de Iones de Hidrógeno , Cinética , Mutación , Péptidos/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Estructura Terciaria de Proteína , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA