Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Total Environ ; 923: 171359, 2024 May 01.
Article En | MEDLINE | ID: mdl-38438025

This study presents the first set of data on the removal of proton pump inhibitors (PPIs) and histamine H2 receptor antagonists (HRAs) and their transformation products in two Romanian wastewater treatment plants (WWTPs), as well as the impact of these organic pollutants on freshwater receiving effluents. The research investigated eight target pharmaceuticals and three metabolites using a newly developed and validated Liquid Chromatography - Mass Spectrometry (LC-MS/MS) method. The combined determination had a range of quantification limits varying from 0.13 ng/L to 0.18 ng/L for surface water and from 0.28 ng/L to 0.43 ng/L for wastewater. All analytes except cimetidine and 5-hydroxy-omeprazole were identified in water samples. The study found similar overall removal efficiencies for both WWTPs (43.2 % for Galati and 51.7 % for Ramnicu-Valcea). The research also showed that ranitidine and omeprazole could pose a low to high ecological risk to aquatic organisms. The findings suggest that the treatment stages used in the two Romanian WWTPs are insufficient to remove the target analytes completely, leading to environmental risks associated with the occurrence of pharmaceutical compounds in effluents and freshwater.


Environmental Monitoring , Pharmaceutical Preparations , Rivers , Water Pollutants, Chemical , Chromatography, Liquid , Omeprazole , Pharmaceutical Preparations/analysis , Risk Assessment , Rivers/chemistry , Romania , Tandem Mass Spectrometry , Waste Disposal, Fluid , Water , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 920: 170898, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38369155

Azole compounds are utilized to combat fungal infections in plants to protect them and also used for treating mycosis in humans. The LC-MS/MS method is a technique that combines liquid chromatography with tandem mass spectrometry for analysis of twelve azole compounds from wastewater (influent, effluent) and sewage sludge. The compounds were isolated from waste water using automatic extraction in the solid phase. Sludge samples were dried by lyophilization, after which they were subjected to ultrasound extraction with methanol. The quantification limits ranged from 0.3 ng/L (clotrimazole-CLO and prochloraz-PRO) to 1.5 ng/L (tetraconazole-TEB and penconazole-PEN), for wastewater samples and for sewage sludge, the LOQs ranged from 0.1 ng/g to 0.6 ng/g. High concentrations of climbazole-CLI (207-391 ng/L), tebuconazole (92-424 ng/L), and clotrimazole (6.9-93-ng/L) were observed in influent samples of the 8 urban wastewater treatment plants, followed by fluconazole (49.3-76.8 ng/L), and prochloraz (7.3-72 ng/L). The ∑Azoles had a maximum of 676 ng/L in the Galati effluent, followed by the Bucharest station 357 ng/L, and 345 ng/L in the Braila effluent. The highest value of the daily mass loading (input) level was observed for climbazole, 265 mg/day/1000 in Iasi station, followed by tebuconazole, 238 mg/day/1000 people in the Bucharest station, and 203 mg/day/1000 people for climbazole in the Targoviste station. The daily mass emission presented values between 0.7 and 247 mg/day/1000 people. The highest emissions were observed for climbazole, 247 mg/day/1000 people in Braila station; 174 mg/day/1000 people in the Iasi station and 129 mg/day/1000 people in the Bucharest station. The concentrations of climbazole detected in the effluent can present a high risk for the plants Lemna minor and Navicula pelliculosa. Clotrimazole may present a high risk to the plant Desmodesmus subspicatus and to the invertebrate Daphnia magna. PRO may present high risk to the invertebrate Mysidopsis Bahia.


Araceae , Water Pollutants, Chemical , Water Purification , Humans , Antifungal Agents/analysis , Sewage/chemistry , Wastewater , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Clotrimazole/analysis , Romania , Azoles , Water Pollutants, Chemical/analysis , Solid Phase Extraction/methods
3.
J Xenobiot ; 14(1): 31-50, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38249100

Organophosphate ester flame retardants (OPFRs) are ubiquitous organic pollutants in the environment and present an important preoccupation due to their potential toxicity to humans and biota. They can be found in various sources, including consumer products, building materials, transportation industry, electronic devices, textiles and clothing, and recycling and waste management. This paper presents the first survey of its kind in Romania, investigating the composition, distribution, possible sources, and environmental risks of OPFRs in five wastewater treatment plants (WWTPs) and the rivers receiving their effluents. Samples from WWTPs and surface waters were collected and subjected to extraction processes to determine the OPFRs using liquid chromatography with mass spectrometric detection. All the target OPFRs were found in all the matrices, with the average concentrations ranging from 0.6 to 1422 ng/L in wastewater, 0.88 to 1851 ng/g dry weight (d.w.) in sewage sludge, and 0.73 to 1036 ng/L in surface waters. The dominant compound in all the cases was tri(2-chloroisopropyl) phosphate (TCPP). This study observed that the wastewater treatment process was inefficient, with removal efficiencies below 50% for all five WWTPs. The environmental risk assessment indicated that almost all the targeted OPFRs pose a low risk, while TDCPP, TCPP, and TMPP could pose a moderate risk to certain aquatic species. These findings provide valuable information for international pollution research and enable the development of pollution control strategies.

...