Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 287: 127868, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126862

RESUMEN

Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas , Percepción de Quorum , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Proteína de Factor 1 del Huésped/metabolismo , Proteína de Factor 1 del Huésped/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Floroglucinol/metabolismo , Floroglucinol/análogos & derivados , Acil-Butirolactonas/metabolismo , Fenoles/metabolismo , Pirrolnitrina/metabolismo , Pirroles/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Compuestos Heterocíclicos con 3 Anillos/metabolismo
2.
Int J Neural Syst ; 34(10): 2450055, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39136190

RESUMEN

Automatic seizure detection from Electroencephalography (EEG) is of great importance in aiding the diagnosis and treatment of epilepsy due to the advantages of convenience and economy. Existing seizure detection methods are usually patient-specific, the training and testing are carried out on the same patient, limiting their scalability to other patients. To address this issue, we propose a cross-subject seizure detection method via unsupervised domain adaptation. The proposed method aims to obtain seizure specific information through shallow and deep feature alignments. For shallow feature alignment, we use convolutional neural network (CNN) to extract seizure-related features. The distribution gap of the shallow features between different patients is minimized by multi-kernel maximum mean discrepancies (MK-MMD). For deep feature alignment, adversarial learning is utilized. The feature extractor tries to learn feature representations that try to confuse the domain classifier, making the extracted deep features more generalizable to new patients. The performance of our method is evaluated on the CHB-MIT and Siena databases in epoch-based experiments. Additionally, event-based experiments are also conducted on the CHB-MIT dataset. The results validate the feasibility of our method in diminishing the domain disparities among different patients.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Convulsiones , Aprendizaje Automático no Supervisado , Humanos , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Aprendizaje Profundo , Procesamiento de Señales Asistido por Computador
3.
Bioinformatics ; 40(Supplement_1): i140-i150, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940126

RESUMEN

MOTIVATION: Metastasis formation is a hallmark of cancer lethality. Yet, metastases are generally unobservable during their early stages of dissemination and spread to distant organs. Genomic datasets of matched primary tumors and metastases may offer insights into the underpinnings and the dynamics of metastasis formation. RESULTS: We present metMHN, a cancer progression model designed to deduce the joint progression of primary tumors and metastases using cross-sectional cancer genomics data. The model elucidates the statistical dependencies among genomic events, the formation of metastasis, and the clinical emergence of both primary tumors and their metastatic counterparts. metMHN enables the chronological reconstruction of mutational sequences and facilitates estimation of the timing of metastatic seeding. In a study of nearly 5000 lung adenocarcinomas, metMHN pinpointed TP53 and EGFR as mediators of metastasis formation. Furthermore, the study revealed that post-seeding adaptation is predominantly influenced by frequent copy number alterations. AVAILABILITY AND IMPLEMENTATION: All datasets and code are available on GitHub at https://github.com/cbg-ethz/metMHN.


Asunto(s)
Genómica , Metástasis de la Neoplasia , Humanos , Genómica/métodos , Metástasis de la Neoplasia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Progresión de la Enfermedad , Neoplasias/genética , Neoplasias/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Mutación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Estudios Transversales , Receptores ErbB/genética
4.
J Agric Food Chem ; 72(9): 5014-5025, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38388339

RESUMEN

Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.


Asunto(s)
Microbioma Gastrointestinal , Lisina , Lisina/análogos & derivados , Animales , Ratones , Lisina/metabolismo , Intestinos , Dieta
5.
ACS Nano ; 18(6): 5003-5016, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294411

RESUMEN

The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed in situ on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions. Under a 50% zinc utilization, the symmetrical battery with this protection layer maintained stable cycling for 250 h at 30 mA cm-2. Matched with high-load self-supported vanadium-based cathodes (18-20 mg cm-2), the coin battery with 50% zinc utilization possessed an energy density retention of 94.3% after 1000 cycles at 20 mA cm-2. Furthermore, the assembled pouch battery delivered a whole energy density of 61.3 Wh kg-1, surpassing the highest mass energy density among reported mild zinc batteries, and retained 76.7% of the energy density and 85.3% (0.53 Ah) of the capacity after 300 cycles.

6.
Food Funct ; 15(3): 1250-1264, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194248

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide. NAFLD is caused by numerous factors, including the genetic susceptibility, oxidative stress, unhealthy diet, and gut microbiota dysbiosis. Among these, gut microbiota is a key factor and plays an important role in the development of NAFLD. Therefore, modulating the composition and structure of gut microbiota might provide a new intervention strategy for NAFLD. Highland barley ß-glucan (HBG) is a polysaccharide that can interact with gut microbiota after entering the lower gastrointestinal tract and subsequently improves NAFLD. Therefore, a Western diet was used to induce NAFLD in mouse models and the intervention effects and underlying molecular mechanisms of HBG on NAFLD mice based on gut microbiota were explored. The results indicated that HBG could regulate the composition of gut microbiota in NAFLD mice. In particular, HBG increased the abundance of short-chain fatty acids (SCFA)-producing bacteria (Prevotella-9, Bacteroides, and Roseburia) as well as SCFA contents. The increase in SCFA contents might activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby improving the liver lipid metabolism disorder and reducing liver lipid deposition.


Asunto(s)
Microbioma Gastrointestinal , Hordeum , Enfermedad del Hígado Graso no Alcohólico , beta-Glucanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , beta-Glucanos/farmacología , Dieta Occidental/efectos adversos , Hígado/metabolismo , Suplementos Dietéticos , Lípidos/farmacología , Ratones Endogámicos C57BL , Dieta Alta en Grasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA