Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38543550

RESUMEN

Potato common scab, an economically important disease worldwide, is caused by pathogenic Streptomyces strains mainly through the effects of thaxtomin. The cello-oligosaccharides binding protein CebE is proposed as a gateway to the pathogenic development of Streptomyces scabiei. In this study, two functional CebE encoding genes, GEO5601 and GEO7671, were identified in pathogenic Streptomyces sp. AMCC400023. With a higher binding affinity towards signal molecules, the deletion of GEO5601 severely impaired thaxtomin-producing capacity and reduced the strain's pathogenicity. Transcriptional analysis confirmed that CebE5601 is also responsible for the import and provision of carbon sources for cell growth. With lower binding affinity, the pathogenicity island (PAI)-localized CebE7671 may assume a new function of mediating the biological process of sporulation, given the significantly impaired formation of ΔGEO7671 spores. The mechanisms of action of CebE proteins unraveled in Streptomyces sp. AMCC400023 will help pave the way for more effective prevention of the potato common scab disease.

2.
PeerJ ; 11: e14984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187528

RESUMEN

Objective: As the primary means of plant-induced haploid, anther culture is of great significance in quickly obtaining pure lines and significantly shortening the potato breeding cycle. Nevertheless, the methods of anther culture of tetraploid potato were still not well established. Methods: In this study, 16 potato cultivars (lines) were used for anther culture in vitro. The corresponding relation between the different development stages of microspores and the external morphology of buds was investigated. A highly-efficient anther culture system of tetraploid potatoes was established. Results: It was shown in the results that the combined use of 0.5 mg/L 1-Naphthylacetic acid (NAA), 1.0 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), and 1.0 mg/L Kinetin (KT) was the ideal choice of hormone pairing for anther callus. Ten of the 16 potato cultivars examined could be induced callus with their respective anthers, and the induction rate ranged from 4.44% to 22.67% using this hormone combination. According to the outcome from the orthogonal design experiments of four kinds of appendages, we found that the medium with sucrose (40 g/L), AgNO3 (30 mg/L), activated carbon (3 g/L), potato extract (200 g/L) had a promotive induction effect on the anther callus. In contrast, adding 1 mg/L Zeatin (ZT) effectively facilitated callus differentiation. Conclusion: Finally, 201 anther culture plantlets were differentiated from 10 potato cultivars. Among these, Qingshu 168 and Ningshu 15 had higher efficiency than anther culture. After identification by flow cytometry and fluorescence in situ hybridization, 10 haploid plantlets (5%), 177 tetraploids (88%), and 14 octoploids (7%) were obtained. Some premium anther-cultured plantlets were further selected by morphological and agronomic comparison. Our findings provide important guidance for potato ploidy breeding.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Tetraploidía , Hibridación Fluorescente in Situ , Fitomejoramiento , Hormonas
3.
Plant Physiol Biochem ; 151: 535-544, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32305820

RESUMEN

NAC transcription factors play a pivotal role in plant growth, development and response to abiotic stress. However, their biological functions in desert trees are largely unknown. In this work, the NAC transcription factor HaNAC1 from Haloxylon ammodendron, a typical wooden plant normally grown in desert, was isolated, and its possible role in plant growth and resistance to drought stress was investigated. HaNAC1 encodes an ATAF subfamily transcription factor containing one NAC domain with five conserved regions. Quantitative real time PCR analyses revealed that HaNAC1 was ubiquitously expressed in various tissues and organs such as roots, stems, leaves and seeds, with a predominant expression in stems. Further studies demonstrated that expression of HaNAC1 was significantly induced by osmotic stress in Haloxylon ammodendron seedlings, and subcellular localization analysis indicated that GFP-HaNAC1 fusion protein was localized to the nucleus in Arabidopsis leaf protoplast. Ectopic expression of HaNAC1 led to promoted growth and drought tolerance in transgenic Arabidopsis, accompanied with up-regulated expression of stress-inducible marker genes, and increased accumulation of proline, IAA and ABA under both normal and drought stress conditions. In addition, co-immunoprecipitation and Bi-molecular fluorescence complementation assays illustrated that HaNAC1 directly interacted with AtNAC32. All these results suggest that HaNAC1 is involved in both the growth and drought resistance of Haloxylon ammodendron, and could be used as a promising candidate gene for the breeding of crops with augmented tolerance to drought stress.


Asunto(s)
Arabidopsis , Chenopodiaceae , Proteínas de Plantas , Estrés Fisiológico , Transactivadores , Arabidopsis/genética , Chenopodiaceae/genética , Sequías , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estrés Fisiológico/genética , Transactivadores/genética , Factores de Transcripción/genética
4.
PLoS One ; 10(5): e0128041, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26010543

RESUMEN

Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal transduction pathways. Our data provide more direct information for future study on the interaction between key genes involved in various metabolic pathways under drought stress in potato.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Solanum tuberosum/crecimiento & desarrollo , Estrés Fisiológico , Sequías , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes y Vías Metabólicas , Análisis de Secuencia de ADN/métodos , Solanum tuberosum/genética , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...