Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095157

RESUMEN

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Asunto(s)
Cobalto , Colorimetría , Norfloxacino , Teléfono Inteligente , Contaminantes Químicos del Agua , Norfloxacino/análisis , Colorimetría/métodos , Cobalto/análisis , Cobalto/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Peroxidasa , Límite de Detección
2.
J Colloid Interface Sci ; 678(Pt B): 266-276, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39245017

RESUMEN

The residual carbaryl in crops can cause serious damage to the human kidney and nervous system after entering the human body, which may be metabolized to 1-naphthol (1-NAP) and excreted through urine. 1-NAP is often used as the biomarker for carbaryl exposure, so the intake or leakage of carbaryl can be monitored by detecting the concentration of 1-NAP. Herein, Co, N, P ternary co-doped carbon dots (CoNP-CDs) derived from vitamin B12 were synthesized by a facile hydrothermal method. CoNP-CDs exhibited oxidase-like activity and excellent peroxidase-like activity, which was attributed to the Fenton-like reaction of Co2+/Co3+ and the presence of pyrrole N and P elements, which together provided multiple active sites for chromogenic substrates. Due to the dual enzyme-like activity of CoNP-CDs, hydroxyl radicals (OH) and superoxide radicals (O2-) were generated during the catalytic process, which could rapidly oxidize colorless 3,3',5,5'-tetramethyl benzidine (TMB) to blue oxidation products (oxTMB). The α-carbon in 1-NAP can be attacked by OH, and the catalytic oxidation process of TMB can be inhibited by the consumption of OH, so that the blue color of the solution became lighter. Based on this principle, a smartphone-assisted colorimetric sensing platform was constructed for the detection of 1-NAP, and which resulted in a linear range of 1.07-37.3 µM and a visual detection limit of 0.68 µM. Moreover, the colorimetric sensing system showed satisfactory recoveries in the detection of human urine samples. The colorimetric sensing system owned the advantages of fast response, strong selectivity and simple operation, and provided a potential strategy for the on-site detection of 1-NAP.

3.
J Hazard Mater ; 479: 135653, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39217939

RESUMEN

In this study, a novel COFTABT@COFTATp modified magnetic MXene composite (CoFe2O4 @Ti3C2 @COFTABT@COFTATp) was synthesized by Schiff base reaction and irre-versible enol-keto tautomerization, and employed to establish a sensitive monitoring method for six thiophene compounds in oilfield produced water samples based on magnetic solid-phase extraction (MSPE) prior to gas chromatography coupled with a triple quadruple mass spectrometer (GC-MS/MS). The designed magnetic materials exhibited unexpected enrichment ability to target thiophene compounds and achieved good extraction efficiencies ranging from 83 % to 98 %. The developed MSPE/GC-MS/MS method exhibited good linearity in the range of 0.001-100 µg L-1, and obtained lower limits of detection ranging from 0.39 to 1.9 ng L-1. The spiked recoveries of thiophene compounds obtained in three oilfield produced water samples were over the range of 96.26 %-99.54 % with relative standard deviations (RSDs) less than 3.7 %. Notably, benzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene were detected in three oilfield-produced water samples. Furthermore, the material still kept favorable stability after six recycling experiments. The adsorption kinetics, adsorption isotherms as well as adsorption thermodynamics of thiophene compounds were investigated in detail to provide insight into the mechanisms. Overall, the present work contributed a promising strategy for designing and synthesizing new functionalized materials for the enrichment and detection of typical pollutants in the environment.

4.
Food Chem ; 459: 140352, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991447

RESUMEN

In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 µg/L and had low limits of detection (0.013-0.018 µg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.


Asunto(s)
Contaminación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Clorados , Estructuras Metalorgánicas , Nanocompuestos , Compuestos Organofosforados , Plaguicidas , Extracción en Fase Sólida , , Té/química , Compuestos Organofosforados/química , Compuestos Organofosforados/análisis , Hidrocarburos Clorados/química , Hidrocarburos Clorados/análisis , Contaminación de Alimentos/análisis , Nanocompuestos/química , Estructuras Metalorgánicas/química , Extracción en Fase Sólida/métodos , Plaguicidas/química , Plaguicidas/análisis , Adsorción , Límite de Detección , Residuos de Plaguicidas/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/aislamiento & purificación
5.
Talanta ; 275: 126119, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640521

RESUMEN

Present work reported a novel nanozyme g-C3N4@Cu, N-CDs with excellent peroxidase-like activity obtained by loading Cu and N co-doped carbon dots on g-C3N4 (graphitic carbon nitride). g-C3N4@Cu, N-CDs can catalyze H2O2 to generate hydroxyl radical •OH, which oxidizes o-phenylenediamine to 2,3-diaminophenazine, which emits orange fluorescence under ultraviolet light irradiation. The experimental results confirmed that 1,4-benzenedithiol (BDT) could inhibit the peroxidase-like activity of g-C3N4@Cu, N-CDs. Based the principle above, a colorimetric-fluorescence dual-mode sensor for rapidly sensing of BDT was creatively constructed with assisting of a smartphone. The sensor showed excellent linearity over ranges of 0.75-132 µM and 0.33-60.0 µM with detection limits of 0.32 µM and 0.25 µM for colorimetric and fluorescence detection, respectively. Moreover, a smartphone-assisted colorimetric array sensor was constructed to distinguish six sulfur-containing compounds according to the difference in the degree of inhibition of nanozyme activity by different sulfur-containing compounds. The array sensor could distinguish sulfur-containing compounds at low concentration as low as 0.4 µM. The results validated that the designed sensor was a convenient and fast platform, which could be utilized as a reliably portable tool for the efficient and accurate detection of BDT and the discrimination of multiple sulfur compounds in real water samples.


Asunto(s)
Colorimetría , Cobre , Teléfono Inteligente , Sulfuros , Colorimetría/métodos , Cobre/química , Sulfuros/química , Compuestos de Cadmio/química , Contaminantes Químicos del Agua/análisis , Peroxidasa/química , Peroxidasa/metabolismo , Fluorescencia , Compuestos de Azufre/análisis , Compuestos de Azufre/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Carbono/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Grafito , Compuestos de Nitrógeno
6.
J Colloid Interface Sci ; 667: 403-413, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640659

RESUMEN

In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 µg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.

7.
Talanta ; 273: 125864, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452592

RESUMEN

Heterocyclic aromatic hydrocarbons are concerned pollutants with carcinogenic toxicity, which exist universally in various environmental matrices and have great harm to environmental and human health. In present work, magnetic resorcinol-formaldehyde composites (Fe3O4@SiO2@R-F) were fabricated via aldol condensation reaction under alkaline condition. The prepared magnetic materials were examined and analyzed with Fourier transform infrared spectroscopy and other related instruments. The Fe3O4@SiO2@R-F composites were utilized to develop an efficient magnetic solid phase extraction (MSPE) method for extracting six heteropolyclic aromatic hydrocarbons from environmental water samples including carbazole (CB), 7-methylquinoline (7-MQL), 9-methylcarbazole (9-MCB), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The analytes were analyzed by high performance liquid chromatography-ultraviolet variable wavelength detector (HPLC-VWD). The main factors affecting MSPE were optimized. With the optimal parameters, 9-MCB and 4-MDBT have good linearity over the concentration range of 0.1-300 µg L-1, and 7-MQL, CB, DBT and 4,6-DMDBT have good linearity over the concentration range of 0.5-300 µg L-1. The limits of detection were over the concentration range of 0.012-0.031 µg L-1. This method was successfully employed to measure real waters, and the spiked recoveries ranged from 89.4% to 99.9%. The results confirmed that the developed method was reliable, robust and could be employed as a usefully alternate way for analyzing such pollutants in waters.

8.
Food Chem ; 447: 138998, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38503068

RESUMEN

As a typical kind of new pollutants, there are still some challenges in the rapid detection of antibiotics. In this work, a sensitive fluorescent probe based on boron-doped carbon dots (B-CDs) in combination with thermo-responsive magnetic molecularly imprinted polymers (T-MMIPs) was constructed for the detection of oxytetracycline (OTC) in tea drinks. T-MMIPs were designed, fabricated and employed to enrich OTC at trace level from tea drinks, and B-CDs were utilized as the fluorescent probe to detect the concentration of OTC. The proposed method exhibited good linear relationship with OTC concentration from 0.2 to 60 µg L-1 and the limit of detection was 0.1 µg L-1. The established method has been successfully validated with tea beverages. Present work was the first attempt application of T-MMIPs in combination with CDs in detection of OTC, and demonstrated that the proposed method endowed the detection of OTC with high selectivity, sensitivity, reliability and wide application prospect, meanwhile offered a new strategy for the method establishment of rapid and sensitive detection of trace antibiotics in food and other matrices.


Asunto(s)
Impresión Molecular , Oxitetraciclina , Oxitetraciclina/análisis , Boro , Impresión Molecular/métodos , Carbono , Colorantes Fluorescentes , Reproducibilidad de los Resultados , Polímeros , Antibacterianos , Extracción en Fase Sólida/métodos , , Fenómenos Magnéticos , Límite de Detección
9.
Talanta ; 272: 125749, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359723

RESUMEN

In this work, a sensitive fluorescent sensor toward p-nitrophenol (4-NP) integrating magnetic molecularly imprinted materials and carbon dots (CDs) was proposed. Magnetic material and CDs derived from K3 [Fe(CN)6] and glucose were simultaneously obtained through simple one-step hydrothermal process. Introducing of molecularly imprinted materials based magnetic solid phase extraction (MSPE) endowed the constructed fluorescent sensor with higher sensitivity and selectivity. The significant factors affecting the sensitivity of the sensor toward 4-NP were optimized. Good linearity was obtained between fluorescent intensity of CDs and different concentration of 4-NP from 0.08 to 62.5 µg L-1. The sensitivity of constructed sensor was very low with detection limit of 0.02 µg L-1. Reliable applicability was also proved by the well-pleasing recoveries of 94.2-97.8% with different spiked concentrations of 4-NP in real environmental waters.

10.
Chemosphere ; 324: 138303, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871803

RESUMEN

Bisphenol A (BPA) is an endocrine disrupting chemical and poses a grave threat to the human health. Herein, a fluorescent probe constructed with molecularly imprinted polymers decorated carbon dots (CDs@MIPs) was proposed for determination of BPA with high selectivity. The CDs@MIPs were constructed using BPA, 4-vinylpyridine and ethylene glycol dimethacrylate as template, functional monomer and cross linker, respectively. The obtained fluorescent probe not only owned a highly selective recognition function derived from MIPs but also displayed an excellent sensitivity for sensing BPA stemmed from CDs. The fluorescence intensity of CDs@MIPs was varied before and after the removal of BPA templates. The fluorescent decrease fraction of the fluorescent probe demonstrates a nice linearity in BPA concentration range of 10-2000 nM (r2 = 0.9998) and the detection limit is as low as 1.5 nM. The fluorescent probe was triumphantly utilized to sense the level of BPA in real aqueous and plastic samples with good results. Moreover, the fluorescent probe offered a wonderful means for fast identification and sensitive detection of BPA from environmental aqueous samples.


Asunto(s)
Impresión Molecular , Puntos Cuánticos , Humanos , Polímeros Impresos Molecularmente , Polímeros , Colorantes Fluorescentes , Carbono , Ácido Cítrico , Agua , Etilenodiaminas , Impresión Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA