Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 368
2.
Chin Med J (Engl) ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721807

BACKGROUND: The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD: The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors-Gata4, Foxa3, and Hnf1a-or alternatively, the expression of two transcription factors, Gata4 and Foxa3. In vivo, we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS: Activation of only two factors, Gata4 and Foxa3, via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION: CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.

3.
J Mol Cell Cardiol ; 191: 7-11, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38608929

Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.

4.
Brain ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38574200

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations leading to mitochondrial dysfunction are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E-variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.

5.
Microorganisms ; 12(4)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38674684

Subgroup J avian leukemia virus (ALV-J) and chicken infectious anemia virus (CIAV) are widely acknowledged as significant immunosuppressive pathogens that commonly co-infect chickens, causing substantial economic losses in the poultry industry. However, whether co-infection of ALV-J and CIAV have synergistic pathogenicity remains uncertain. To explore their synergistic pathogenesis, we established a co-infection model of ALV-J and CIAV in HD11 cells and specific-pathogen-free (SPF) chickens. We discovered that ALV-J and CIAV can synergistically promote the secretion of IL-6, IL-10, IFN-α, and IFN-γ and apoptosis in HD11 cells. In vivo, compared to the ALV-J and CIAV mono-infected group, the mortality increased significantly by 27% (20 to 47%) and 14% (33 to 47%) in the co-infected group, respectively. We also discovered that ALV-J and CIAV synergistically inhibited weight gain and exhibited more severe organ damage in co-infected chickens. Furthermore, we found that CIAV can promote the replication of ALV-J in HD11 cells and significantly enhance ALV-J viral load in blood and tissues of co-infected chickens, but ALV-J cannot promote the replication of CIAV. Moreover, by measuring the immune organ indexes and proportions of blood CD3+CD4+ and CD3+CD8+ lymphocytes, more serious instances of immunosuppression were observed in ALV-J and CIAV co-infected chickens than in mono-infected chickens. Taken together, our findings demonstrate that ALV-J and CIAV synergistically enhance pathogenicity and immunosuppression.

6.
J Clin Invest ; 134(10)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512413

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Bone Remodeling , Glucocorticoids , Osteogenesis , Animals , Mice , Glucocorticoids/pharmacology , Osteogenesis/drug effects , Bone Remodeling/drug effects , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Fatty Acids/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/immunology , Cellular Microenvironment/drug effects
7.
Acta Biomater ; 179: 256-271, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38484831

In rheumatoid arthritis (RA), macrophages infiltrate joints, while fibroblast-like synovial cells proliferate abnormally, forming a barrier against drug delivery, which hinders effective drug delivery to joint focus. Here we firstly designed a pH-responsive size-adjustable nanoparticle, composed by methotrexate (MTX)-human serum albumin (HSA) complex coating with pH-responsive liposome (Lipo/MTX-HSA) for delivering drugs specifically to inflamed joints in acidic environments. We showed in vitro that the nanoparticles can induce mitochondrial dysfunction, promote apoptosis of fibroblast-like synoviocytes and macrophages, further reduce the secretion of inflammatory factors (TNF-α, IL-1ß, MMP-9), and regulate the inflammatory microenvironment. We also demonstrated similar effects in a rat model of arthritis, in which Lipo/MTX-HSA accumulated in arthritic joints, and at low pH, liposome phospholipid bilayer cleavage released small-sized MTX-HSA, which effectively reduced the number of fibroblast-synoviocytes and macrophages in joints, alleviated joint inflammation, and repaired bone erosion. These findings suggest that microenvironment-responsive size-adjustable nanoparticles show promise as a treatment against rheumatoid arthritis. STATEMENT OF SIGNIFICANCE: Abnormal proliferation of fibroblast synoviocytes poses a physical barrier to effective nanoparticle delivery. We designed size-adjustable nano-delivery systems by preparing liposomes with cholesterol hemisuccinate (CHEM), which were subsequently loaded with small-sized albumin nanoparticles encapsulating the cytotoxic drug MTX (MTX-HSA), termed Lipo/MTX-HSA. Upon tail vein injection, Lipo/MTX-HSA could be aggregated at the site of inflammation via the ELVIS effect in the inflamed joint microenvironment. Specifically, intracellular acidic pH-triggered dissociation of liposomes promoted the release of MTX-HSA, which was further targeted to fibroblasts or across fibroblasts to macrophages to exert anti-inflammatory effects. The results showed that liposomes with adjustable particle size achieved efficient drug delivery, penetration and retention in joint sites; the strategy exerted significant anti-inflammatory effects in the treatment of rheumatoid arthritis by inducing mitochondrial dysfunction to promote apoptosis in fibrosynoviocytes and macrophages.


Apoptosis , Arthritis, Rheumatoid , Fibroblasts , Liposomes , Macrophages , Methotrexate , Liposomes/chemistry , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/drug therapy , Fibroblasts/drug effects , Fibroblasts/pathology , Fibroblasts/metabolism , Animals , Hydrogen-Ion Concentration , Methotrexate/pharmacology , Methotrexate/chemistry , Apoptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Humans , Rats , Rats, Sprague-Dawley , Mice , Particle Size , Male , Synoviocytes/drug effects , Synoviocytes/pathology , Synoviocytes/metabolism , RAW 264.7 Cells , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , Nanoparticles/chemistry
8.
Thorac Cancer ; 15(12): 947-964, 2024 Apr.
Article En | MEDLINE | ID: mdl-38480505

BACKGROUND: The spleen plays an important role in systemic antitumor immune response, but whether spleen imaging features have predictive effect for prognosis and immune status was unknown. The aim of this study was to investigate computed tomography (CT)-based spleen radiomics to predict the prognosis of patients with esophageal squamous cell carcinoma (ESCC) underwent definitive radiotherapy (dRT) and to try to find its association with systemic immunity. METHODS: This retrospective study included 201 ESCC patients who received dRT. Patients were randomly divided into training (n = 142) and validation (n = 59) groups. The pre- and delta-radiomic features were extracted from enhanced CT images. LASSO-Cox regression was used to select the radiomics signatures most associated with progression-free survival (PFS) and overall survival (OS). Independent prognostic factors were identified by univariate and multivariate Cox analyses. The ROC curve and C-index were used to evaluate the predictive performance. Finally, the correlation between spleen radiomics and immune-related hematological parameters was analyzed by spearman correlation analysis. RESULTS: Independent prognostic factors involved TNM stage, treatment regimen, tumor location, pre- or delta-Rad-score. The AUC of the delta-radiomics combined model was better than other models in the training and validation groups in predicting PFS (0.829 and 0.875, respectively) and OS (0.857 and 0.835, respectively). Furthermore, some spleen delta-radiomic features are significantly correlated with delta-ALC (absolute lymphocyte count) and delta-NLR (neutrophil-to-lymphocyte ratio). CONCLUSIONS: Spleen radiomics is expected to be a useful noninvasive tool for predicting the prognosis and evaluating systemic immune status for ESCC patients underwent dRT.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Spleen , Humans , Male , Female , Prognosis , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Retrospective Studies , Spleen/diagnostic imaging , Spleen/pathology , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/mortality , Aged , Tomography, X-Ray Computed/methods , Adult , Radiomics
9.
Acta Ortop Bras ; 32(1): e266853, 2024.
Article En | MEDLINE | ID: mdl-38532868

Objective: The objective of this study was to evaluate the impact of drainage tube placement on postoperative pain, recovery, and opioid consumption within a 72-hour period following unicompartmental knee arthroplasty (UKA). Methods: Patients with medial knee osteoarthritis who underwent UKA from January 2019 to August 2020 were enrolled in the study and divided into two groups based on whether they received a drain postoperatively. Results: The drainage group had significantly lower VAS scores on day 1, day 2, and day 3, in addition to significantly smaller changes in the circumference of the knee joint within 3 days postoperatively (P <0.05). The ROM in the drainage group significantly increased at 3 days and 1 month post-surgery, with a statistically significant difference in morphine consumption between the two groups at 3 days (P<0.05). The incidence of postoperative nausea and vomiting (5 cases) and wound bleeding (1 case) was lower in the drainage group compared to the non-drainage group (P<0.05). Conclusions: The placement of a drainage tube in UKA may reduce the swelling of knee joint and pain, which not only reduces the use of Opioid but also facilitates early functional activities of the knee joint. Level of Evidence III; Retrospective Comparative Study.


Objetivo: O objetivo deste estudo foi avaliar o impacto da implantação do tubo de drenagem na dor pós-operatória, na recuperação e no consumo de opioides em um período de 72 horas após a artroplastia unicompartimental do joelho (UKA). Métodos: Pacientes com osteoartrite medial do joelho submetidos à UKA de janeiro de 2019 a agosto de 2020 foram incluídos no estudo e divididos em dois grupos com base no fato de terem ou não recebido um dreno no pós-operatório. Resultados: O grupo de drenagem apresentou escores EVA significativamente menores no dia 1, no dia 2 e no dia 3, além de alterações significativamente menores na circunferência da articulação do joelho em 3 dias de pós-operatório (P <0,05). A ADM no grupo de drenagem aumentou significativamente em 3 dias e 1 mês após a cirurgia, com uma diferença estatisticamente significativa no consumo de morfina entre os dois grupos em 3 dias (P<0,05). A incidência de náuseas e vômitos no pós-operatório(5 casos) e sangramento da ferida (1 caso) foi menor no grupo de drenagem em comparação com o grupo sem drenagem (P<0,05). Conclusão: A utilização de tubo de drenagem na UKA pode reduzir o edema articular do joelho e a dor, reduzindo o uso de opioides e facilitando as atividades funcionais iniciais da articulação do joelho. Nível de Evidência III; Estudo Comparativo Retrospectivo.

10.
J Mater Chem B ; 12(15): 3719-3740, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38529844

Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.


Catechin , Chronic Periodontitis , Diabetes Mellitus, Experimental , Drug Delivery Systems , Glucose , Reactive Oxygen Species , Glucose/metabolism , Reactive Oxygen Species/metabolism , Chronic Periodontitis/complications , Chronic Periodontitis/drug therapy , Diabetes Mellitus, Experimental/complications , Animals , Rats , Catechin/administration & dosage , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Rheology , Hydrogels , Antioxidants/metabolism , Macrophages/drug effects , Inflammation/drug therapy , Osteoclasts/cytology , Osteoblasts/cytology , Cell Differentiation , Bone Regeneration/drug effects , X-Ray Microtomography , Alveolar Bone Loss/drug therapy , Drug Delivery Systems/methods , Alginates , Schiff Bases , Male , Rats, Sprague-Dawley , RAW 264.7 Cells , Mice
11.
Diabetes Metab ; 50(3): 101526, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38458351

AIM: This study aimed to investigate the association of social isolation, loneliness, and their trajectory with the risk of developing type 2 diabetes mellitus (T2DM) across genetic risk. METHODS: We included 439,337 participants (mean age 56.3 ± 8.1 years) enrolled in the UK Biobank study who were followed up until May 31, 2021. Social isolation and loneliness were self-reported and were further categorized into never, transient, incident, and persistent patterns. RESULTS: During a median follow-up of 12.7 years, 15,258 incident T2DM cases were documented. Social isolation (versus no social isolation: hazard ratio (HR) 95 % confidence interval (CI) 1.04 [1.00;1.09]) and loneliness (versus no loneliness: 1.26 [1.19;1.34]) were associated with an increased T2DM risk, independent of the genetic risk for T2DM. The interactions existed between social isolation and loneliness (Pinteraction < 0.05); the increased T2DM risk associated with social isolation was only significant among participants without loneliness. In the longitudinal analysis, only persistent social isolation (versus never social isolation: 1.22 [1.02;1.45]) was associated with an increased T2DM risk, whereas incident loneliness (versus never loneliness: 1.95 [1.40;2.71]) and persistent loneliness (2.00 [1.31;3.04]) were associated with higher T2DM risks. CONCLUSION: Social isolation and loneliness, especially their persistent pattern, were independently associated with an increased incident T2DM risk, irrespective of an individual's genetic risk. Loneliness modified the association between social isolation and incident T2DM.

12.
Nature ; 626(7998): 288-293, 2024 Feb.
Article En | MEDLINE | ID: mdl-38326594

The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.

13.
EBioMedicine ; 101: 104995, 2024 Mar.
Article En | MEDLINE | ID: mdl-38350330

RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.


Alternative Splicing , Cardiovascular Diseases , Animals , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Mutation , Nonsense Mediated mRNA Decay , RNA Splicing Factors/genetics
14.
Theranostics ; 14(1): 159-175, 2024.
Article En | MEDLINE | ID: mdl-38164159

Rationale: Ischemic stroke poses a significant health burden with limited treatment options. Lymphocyte Cytosolic Protein 1 (LCP1) facilitates cell migration and immune responses by aiding in actin polymerization, cytoskeletal rearrangements, and phagocytosis. We have demonstrated that the long non-coding RNA (lncRNA) Maclpil silencing in monocyte-derived macrophages (MoDMs) led to LCP1 inhibition, reducing ischemic brain damage. However, the role of LCP1 of MoDMs in ischemic stroke remains unknown. Methods and Results: We investigated the impact of LCP1 on ischemic brain injury and immune cell signaling and metabolism. We found that knockdown of LCP1 in MoDMs demonstrated robust protection against ischemic infarction and improved neurological behaviors in mice. Utilizing the high-dimensional CyTOF technique, we demonstrated that knocking down LCP1 in MoDMs led to a reduction in neuroinflammation and attenuation of lymphopenia, which is linked to immunodepression. It also showed altered immune cell signaling by modulating the phosphorylation levels of key kinases and transcription factors, including p-PLCg2, p-ERK1/2, p-EGFR, p-AKT, and p4E-BP1 as well as transcription factors like p-STAT1, p-STAT3, and p-STAT4. Further bioinformatic analysis indicated that Akt and EGFR are particularly involved in fatty acid metabolism and glycolysis. Indeed, single-cell sequencing analysis confirmed that enrichment of fatty acid and glycolysis metabolism in Lcp1high monocytes/macrophages. Furthermore, Lcp1high cells exhibited enhanced oxidative phosphorylation, chemotaxis, migration, and ATP biosynthesis pathways. In vitro experiments confirmed the role of LCP1 in regulating mitochondrial function and fatty acid uptake. Conclusions: These findings contribute to a deeper understanding of LCP1 in the context of ischemic stroke and provide valuable insights into potential therapeutic strategies targeting LCP1 and metabolic pathways, aiming to attenuating neuroinflammation and lymphopenia.


Brain Injuries , Ischemic Stroke , Lymphopenia , Mice , Animals , Proto-Oncogene Proteins c-akt , Neuroinflammatory Diseases , Macrophages , Signal Transduction , ErbB Receptors , Fatty Acids , Transcription Factors
15.
Regen Biomater ; 11: rbad111, 2024.
Article En | MEDLINE | ID: mdl-38173764

Titanium (Ti) implants have been extensively used after surgical operations. Its surface bioactivity is of importance to facilitate integration with surrounding bone tissue, and ultimately ensure stability and long-term functionality of the implant. The plasmid DNA-activated matrix (DAM) coating on the surface could benefit osseointegration but is still trapped by poor transfection for further application, especially on the bone marrow mesenchymal stem cells (BMSCs) in vivo practical conditions. Herein, we constructed a DAM on the surface of fibrous-grained titanium (FG Ti) composed of phase-transition lysozyme (P) as adhesive, cationic arginine-rich lipid (RLS) as the transfection agent and plasmid DNA (pDNA) for bone morphology protein 2 (BMP2) expression. The cationic lipid RLS improved up to 30-fold higher transfection than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) on MSC. And importantly, Ti surface topology not only promotes the DAM to achieve high transfection efficiency (∼75.7% positive cells) on MSC due to the favorable combination but also reserves its contact induction effect for osteoblasts. Upon further exploration, the fibrous topology on FG Ti could boost pDNA uptake for gene transfection, and cell migration in MSC through cytoskeleton remodeling and induce contact guidance for enhanced osteointegration. At the same time, the cationic RLS together with adhesive P were both antibacterial, showing up to 90% inhibition rate against Escherichia coli and Staphylococcus aureus with reduced adherent microorganisms and disrupted bacteria. Finally, the FG Ti-P/pBMP2 implant achieved accelerated bone healing capacities through highly efficient gene delivery, aligned surface topological structure and increased antimicrobial properties in a rat femoral condylar defect model.

16.
J Colloid Interface Sci ; 657: 598-610, 2024 Mar.
Article En | MEDLINE | ID: mdl-38071809

HYPOTHESIS: Tumor-associated macrophages (TAM) are the mainstay of immunosuppressive cells in the tumor microenvironment, and elimination of M2-type macrophages (M2-TAM) is considered as a potential immunotherapy. However, the interaction of breast cancer cells with macrophages hinders the effectiveness of immunotherapy. In order to improve the efficacy of triple-negative breast cancer (TNBC) therapy, strategies that simultaneously target the elimination of M2-TAM and breast cancer cells may be able to achieve a better therapy. EXPERIMENTS: LyP-SA/AgNP@Dox multifunctional nanoparticles were synthesized by electrostatic adsorption. They were characterized by particle size, potential and spectroscopy. And the efficacy of multifunctional nanoparticles was evaluated in 4 T1 cell lines and M2 macrophages, including their cell uptake intracellular reactive oxygen species (ROS) production and the therapeutic effect. Furthermore, based on the orthotopic xenotransplantation model of triple negative breast cancer, the biological distribution, fluorescence imaging, biosafety evaluation and combined efficacy evaluation of the nanoplatform were performed. FINDINGS: We have successfully prepared LyP-SA/AgNP@Dox and characterized. Administering the nanosystem to 4 T1 tumor cells or M2 macrophages in culture induced accumulation of reactive oxygen species, destruction of mitochondria and apoptosis, and inhibited replication and transcription. Animal experiments demonstrated the nanoparticle had favorable targeting and antitumor activity. Our nanosystem may be useful for simultaneously inhibiting tumor and tumor-associated macrophages in breast cancer and, potentially, other malignancies.


Multifunctional Nanoparticles , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Reactive Oxygen Species , Cell Line , Nanoparticles/chemistry , Cell Line, Tumor , Tumor Microenvironment
17.
Small ; 20(3): e2305727, 2024 Jan.
Article En | MEDLINE | ID: mdl-37699770

Promoting the proton-coupled electron transfer process in order to solve the sluggish carrier migration dynamics is an efficient way to accelerate the photocatalytic CO2 reduction (PCR) process. Herein, through the reduction of Sn4+ by amino and sulfhydryl groups, Sn0 particles are lodged in S-vacancies SnS2 nanosheets. The high conductance of Sn0 particles expedites the collection and transport of photogenerated electrons, activating the surrounding surface of unsaturated sulfur (Sx 2- ) and thus lowering the energy barrier for generation of *COOH. Meanwhile, S-vacancies boost H2 O adsorption while Sx 2- increases CO2 adsorption, as demonstrated by density functional theory (DFT), obtaining a selectivity of 97.88% CO and yield of 295.06 µmol g-1 h-1 without the addition of co-catalysts and sacrificial agents. This work provides a new approach to building a fast electron transfer interface between metal particles and semiconductors, which works in tandem with S-vacancies and Sx 2- to boost the efficiency of photocatalytic CO2 reduction to CO in pure water vapor environment.

18.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Article En | MEDLINE | ID: mdl-37886839

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Heart Injuries , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Humans , Mice , Animals, Newborn , Cell Proliferation , Heart , Heart Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mammals , Myocytes, Cardiac/metabolism , Regeneration , Versicans/genetics , Versicans/metabolism
19.
Acta Biomater ; 173: 457-469, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37984631

Magnetic nanoparticles (MNPs) are promising in tumor treatments due to their capacity for magnetic hyperthermia therapy (MHT), chemodynamic therapy (CDT), and immuno-related therapies, but still suffer from unsatisfactory tumor inhibition in the clinic. Insufficient hydrogen peroxide supply, glutathione-induced resistance, and high-density extracellular matrix (ECM) are the barriers. Herein, we hierarchically decorated MNPs with disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx) to form a nanosystem (MNPs-SS-R-GOx). Its outer GOx layer not only enhanced the H2O2 supply to produce .OH by Fenton reaction, but also generated stronger oxidants (ONOO-) together with the interfaced R layer. The inner S-S layer consumed glutathione to interdict its reaction with oxidants, thus enhancing CDT effects. Importantly, the generated ONOO- tripled the MMP-9 expression to induce ECM degradation, enabling much deeper penetration of MNPs and benefiting CDT, MHT, and immunotherapy. Finally, the MNPs-SS-R-GOx demonstrated a remarkable 91.7% tumor inhibition in vivo. STATEMENT OF SIGNIFICANCE: Magnetic nanoparticles (MNPs) are a promising tumor therapeutic agent but with limited effectiveness. Our hierarchical MNP design features disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx), which boosts H2O2 supply for ·OH generation in Fenton reactions, produces potent ONOO-, and enhances chemodynamic therapy via glutathione consumption. Moreover, the ONOO- facilitates the upregulation of matrix metalloprotein expression beneficial for extracellular matrix degradation, which in turn enhances the penetration of MNPs and benefits the antitumor CDT/MHT/immuno-related therapy. In vivo experiments have demonstrated an impressive 91.7% inhibition of tumor growth. This hierarchical design offers groundbreaking insights for further advancements in MNP-based tumor therapy. Its implications extend to a broader audience, encompassing those interested in material science, biology, oncology, and beyond.


Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Neoplasms , Humans , Glucose Oxidase , Hydrogen Peroxide , Magnetite Nanoparticles/therapeutic use , Oxidative Stress , Arginine , Glutathione , Nanoparticles/therapeutic use , Neoplasms/therapy , Oxidants , Disulfides , Magnetic Phenomena , Cell Line, Tumor , Tumor Microenvironment
20.
Acta ortop. bras ; 32(1): e266853, 2024. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-1549995

ABSTRACT Objective: The objective of this study was to evaluate the impact of drainage tube placement on postoperative pain, recovery, and opioid consumption within a 72-hour period following unicompartmental knee arthroplasty (UKA). Methods: Patients with medial knee osteoarthritis who underwent UKA from January 2019 to August 2020 were enrolled in the study and divided into two groups based on whether they received a drain postoperatively. Results: The drainage group had significantly lower VAS scores on day 1, day 2, and day 3, in addition to significantly smaller changes in the circumference of the knee joint within 3 days postoperatively (P <0.05). The ROM in the drainage group significantly increased at 3 days and 1 month post-surgery, with a statistically significant difference in morphine consumption between the two groups at 3 days (P<0.05). The incidence of postoperative nausea and vomiting (5 cases) and wound bleeding (1 case) was lower in the drainage group compared to the non-drainage group (P<0.05). Conclusions: The placement of a drainage tube in UKA may reduce the swelling of knee joint and pain, which not only reduces the use of Opioid but also facilitates early functional activities of the knee joint. Level of Evidence III; Retrospective Comparative Study.


RESUMO Objetivo: O objetivo deste estudo foi avaliar o impacto da implantação do tubo de drenagem na dor pós-operatória, na recuperação e no consumo de opioides em um período de 72 horas após a artroplastia unicompartimental do joelho (UKA). Métodos: Pacientes com osteoartrite medial do joelho submetidos à UKA de janeiro de 2019 a agosto de 2020 foram incluídos no estudo e divididos em dois grupos com base no fato de terem ou não recebido um dreno no pós-operatório. Resultados: O grupo de drenagem apresentou escores EVA significativamente menores no dia 1, no dia 2 e no dia 3, além de alterações significativamente menores na circunferência da articulação do joelho em 3 dias de pós-operatório (P <0,05). A ADM no grupo de drenagem aumentou significativamente em 3 dias e 1 mês após a cirurgia, com uma diferença estatisticamente significativa no consumo de morfina entre os dois grupos em 3 dias (P<0,05). A incidência de náuseas e vômitos no pós-operatório(5 casos) e sangramento da ferida (1 caso) foi menor no grupo de drenagem em comparação com o grupo sem drenagem (P<0,05). Conclusão: A utilização de tubo de drenagem na UKA pode reduzir o edema articular do joelho e a dor, reduzindo o uso de opioides e facilitando as atividades funcionais iniciais da articulação do joelho. Nível de Evidência III; Estudo Comparativo Retrospectivo.

...