Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
mSphere ; 6(3)2021 05 19.
Article En | MEDLINE | ID: mdl-34011691

Malaria is a mosquito-borne disease caused by apicomplexan parasites of the genus Plasmodium. Completion of the parasite's life cycle depends on the transmission of sexual stages, the gametocytes, from an infected human host to the mosquito vector. Sexual commitment occurs in only a small fraction of asexual blood-stage parasites and is initiated by external cues. The gametocyte development protein 1 (GDV1) has been described as a key facilitator to trigger sexual commitment. GDV1 interacts with the silencing factor heterochromatin protein 1 (HP1), leading to its dissociation from heterochromatic DNA at the genomic locus encoding AP2-G, the master transcription factor of gametocytogenesis. How this process is regulated is not known. In this study, we have addressed the role of protein kinases implicated in gametocyte development. From a pool of available protein kinase knockout (KO) lines, we identified two kinase knockout lines which fail to produce gametocytes. However, independent genetic verification revealed that both kinases are not required for gametocytogenesis but that both lines harbor the same mutation that leads to a truncation in the extreme C terminus of GDV1. Introduction of the identified nonsense mutation into the genome of wild-type parasite lines replicates the observed phenotype. Using a GDV1 overexpression line, we show that the truncation in the GDV1 C terminus does not interfere with the nuclear import of GDV1 or its interaction with HP1 in vitro but appears to be important to sustain GDV1 protein levels and thereby sexual commitment.IMPORTANCE Transmission of malaria-causing Plasmodium species by mosquitos requires the parasite to change from a continuously growing asexual parasite form growing in the blood to a sexually differentiated form, the gametocyte. Only a small subset of asexual parasites differentiates into gametocytes that are taken up by the mosquito. Transmission represents a bottleneck in the life cycle of the parasite, so a molecular understanding of the events that lead to stage conversion may identify novel intervention points. Here, we screened a subset of kinases we hypothesized to play a role in this process. While we did not identify kinases required for sexual conversion, we identified a mutation in the C terminus of the gametocyte development 1 protein (GDV1), which abrogates sexual development. The mutation destabilizes the protein but not its interaction with its cognate binding partner HP1. This suggests an important role for the GDV1 C terminus beyond trafficking and protein stability.


Amino Acids/genetics , Gametogenesis/genetics , Life Cycle Stages/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Gene Expression Regulation , Humans , Malaria, Falciparum , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Sequence Analysis, RNA , Sex Differentiation/genetics
2.
Sci Rep ; 9(1): 16720, 2019 11 13.
Article En | MEDLINE | ID: mdl-31723180

Previous studies in model eukaryotes have demonstrated that phosphorylation of heterochromatin protein 1 (HP1) is important for dynamically regulating its various functions. However, in the malaria parasite Plasmodium falciparum both the function of HP1 phosphorylation and the identity of the protein kinases targeting HP1 are still elusive. In order to functionally analyze phosphorylation of P. falciparum HP1 (PfHP1), we first mapped PfHP1 phosphorylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of native PfHP1, which identified motifs from which potential kinases could be predicted; in particular, several phosphorylated residues were embedded in motifs rich in acidic residues, reminiscent of targets for P. falciparum casein kinase 2 (PfCK2). Secondly, we tested recombinant PfCK2 and a number of additional protein kinases for their ability to phosphorylate PfHP1 in in vitro kinase assays. These experiments validated our prediction that PfHP1 acts as a substrate for PfCK2. Furthermore, LC-MS/MS analysis showed that PfCK2 phosphorylates three clustered serine residues in an acidic motif within the central hinge region of PfHP1. To study the role of PfHP1 phosphorylation in live parasites we used CRISPR/Cas9-mediated genome editing to generate a number of conditional PfHP1 phosphomutants based on the DiCre/LoxP system. Our studies revealed that neither PfCK2-dependent phosphorylation of PfHP1, nor phosphorylation of the hinge domain in general, affect PfHP1's ability to localize to heterochromatin, and that PfHP1 phosphorylation in this region is dispensable for the proliferation of P. falciparum blood stage parasites.


Casein Kinase II/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Casein Kinase II/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Humans , Malaria, Falciparum/metabolism , Mutation , Phosphorylation , Protozoan Proteins/genetics
3.
Cell Host Microbe ; 23(3): 407-420.e8, 2018 03 14.
Article En | MEDLINE | ID: mdl-29503181

Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.


Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic/genetics , Epigenomics , Gene Expression Profiling , Heterochromatin/genetics , Plasmodium/genetics , Plasmodium/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Animals , Antigenic Variation/genetics , Antigens, Protozoan/genetics , Cell Proliferation , Chromobox Protein Homolog 5 , Disease Models, Animal , Female , Gene Expression Regulation , Gene Silencing , Host-Parasite Interactions/genetics , Host-Parasite Interactions/physiology , Humans , Life Cycle Stages/genetics , Life Cycle Stages/physiology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred BALB C , Parasites/genetics , Phylogeny , Plasmodium/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sex Differentiation
4.
Science ; 359(6381): 1259-1263, 2018 03 16.
Article En | MEDLINE | ID: mdl-29590075

Malaria is caused by Plasmodium parasites that proliferate in the bloodstream. During each replication cycle, some parasites differentiate into gametocytes, the only forms able to infect the mosquito vector and transmit malaria. Sexual commitment is triggered by activation of AP2-G, the master transcriptional regulator of gametocytogenesis. Heterochromatin protein 1 (HP1)-dependent silencing of ap2-g prevents sexual conversion in proliferating parasites. In this study, we identified Plasmodium falciparum gametocyte development 1 (GDV1) as an upstream activator of sexual commitment. We found that GDV1 targeted heterochromatin and triggered HP1 eviction, thus derepressing ap2-g Expression of GDV1 was responsive to environmental triggers of sexual conversion and controlled via a gdv1 antisense RNA. Hence, GDV1 appears to act as an effector protein that induces sexual differentiation by antagonizing HP1-dependent gene silencing.


Chromosomal Proteins, Non-Histone/metabolism , Gametogenesis/genetics , Gene Silencing , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Sex Differentiation/genetics , Animals , Chromobox Protein Homolog 5 , Plasmodium falciparum/genetics
5.
Cell ; 171(7): 1532-1544.e15, 2017 Dec 14.
Article En | MEDLINE | ID: mdl-29129376

Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.


Lysophosphatidylcholines/metabolism , Malaria/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Animals , Female , Humans , Malaria/immunology , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Plasmodium berghei/physiology , Reproduction
6.
Nat Microbiol ; 2: 17033, 2017 Mar 13.
Article En | MEDLINE | ID: mdl-28288093

Telomere repeat-binding factors (TRFs) are essential components of the molecular machinery that regulates telomere function. TRFs are widely conserved across eukaryotes and bind duplex telomere repeats via a characteristic MYB-type domain. Here, we identified the telomere repeat-binding protein PfTRZ in the malaria parasite Plasmodium falciparum, a member of the Alveolate phylum for which TRFs have not been described so far. PfTRZ lacks an MYB domain and binds telomere repeats via a C2H2-type zinc finger domain instead. In vivo, PfTRZ binds with high specificity to the telomeric tract and to interstitial telomere repeats upstream of subtelomeric virulence genes. Conditional depletion experiments revealed that PfTRZ regulates telomere length homeostasis and is required for efficient cell cycle progression. Intriguingly, we found that PfTRZ also binds to and regulates the expression of 5S rDNA genes. Combined with detailed phylogenetic analyses, our findings identified PfTRZ as a remote functional homologue of the basic transcription factor TFIIIA, which acquired a new function in telomere maintenance early in the apicomplexan lineage. Our work sheds unexpected new light on the evolution of telomere repeat-binding proteins and paves the way for dissecting the presumably divergent mechanisms regulating telomere functionality in one of the most deadly human pathogens.


Evolution, Molecular , Malaria, Falciparum/genetics , Telomere-Binding Proteins/genetics , Protein Binding , Telomere/metabolism , Transcription Factor TFIIIA/genetics , Zinc Fingers
7.
Cell Host Microbe ; 16(2): 165-176, 2014 Aug 13.
Article En | MEDLINE | ID: mdl-25121746

Clonally variant expression of surface antigens allows the malaria parasite Plasmodium falciparum to evade immune recognition during blood stage infection and secure malaria transmission. We demonstrate that heterochromatin protein 1 (HP1), an evolutionary conserved regulator of heritable gene silencing, controls expression of numerous P. falciparum virulence genes as well as differentiation into the sexual forms that transmit to mosquitoes. Conditional depletion of P. falciparum HP1 (PfHP1) prevents mitotic proliferation of blood stage parasites and disrupts mutually exclusive expression and antigenic variation of the major virulence factor PfEMP1. Additionally, PfHP1-dependent regulation of PfAP2-G, a transcription factor required for gametocyte conversion, controls the switch from asexual proliferation to sexual differentiation, providing insight into the epigenetic mechanisms underlying gametocyte commitment. These findings show that PfHP1 is centrally involved in clonally variant gene expression and sexual differentiation in P. falciparum and have major implications for developing antidisease and transmission-blocking interventions against malaria.


Chromosomal Proteins, Non-Histone/physiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Protozoan Proteins/physiology , Cell Cycle Checkpoints , Cells, Cultured , Chromobox Protein Homolog 5 , Gene Expression Regulation , Histones/metabolism , Host-Parasite Interactions , Humans , Malaria, Falciparum/transmission , Plasmodium falciparum/cytology , Transcriptome
8.
Genome Biol ; 13(11): R108, 2012 Nov 26.
Article En | MEDLINE | ID: mdl-23181666

BACKGROUND: The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS: We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION: Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.


Nuclear Proteins/isolation & purification , Plasmodium falciparum/metabolism , Proteomics/methods , Protozoan Proteins/isolation & purification , Cell Nucleus/metabolism , Chromatography, Liquid/methods , Erythrocytes/parasitology , Humans , Mass Spectrometry/methods , Nuclear Proteins/metabolism , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism
9.
PLoS Pathog ; 6(2): e1000784, 2010 Feb 26.
Article En | MEDLINE | ID: mdl-20195509

The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology.


Chromosomal Proteins, Non-Histone/genetics , Chromosomes/genetics , Gene Expression Regulation/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/metabolism , Transcription Factors/metabolism , Blotting, Southern , Blotting, Western , Chromatin Immunoprecipitation , Chromobox Protein Homolog 5 , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique , Genes, Protozoan , Heterochromatin , Reverse Transcriptase Polymerase Chain Reaction
10.
PLoS Pathog ; 5(9): e1000569, 2009 Sep.
Article En | MEDLINE | ID: mdl-19730695

Epigenetic processes are the main conductors of phenotypic variation in eukaryotes. The malaria parasite Plasmodium falciparum employs antigenic variation of the major surface antigen PfEMP1, encoded by 60 var genes, to evade acquired immune responses. Antigenic variation of PfEMP1 occurs through in situ switches in mono-allelic var gene transcription, which is PfSIR2-dependent and associated with the presence of repressive H3K9me3 marks at silenced loci. Here, we show that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks. Based on nuclear fractionation and detailed immuno-localization assays, PfHP1 constitutes a major component of heterochromatin in perinuclear chromosome end clusters. High-resolution genome-wide chromatin immuno-precipitation demonstrates the striking association of PfHP1 with virulence gene arrays in subtelomeric and chromosome-internal islands and a high correlation with previously mapped H3K9me3 marks. These include not only var genes, but also the majority of P. falciparum lineage-specific gene families coding for exported proteins involved in host-parasite interactions. In addition, we identified a number of PfHP1-bound genes that were not enriched in H3K9me3, many of which code for proteins expressed during invasion or at different life cycle stages. Interestingly, PfHP1 is absent from centromeric regions, implying important differences in centromere biology between P. falciparum and its human host. Over-expression of PfHP1 results in an enhancement of variegated expression and highlights the presence of well-defined heterochromatic boundaries. In summary, we identify PfHP1 as a major effector of virulence gene silencing and phenotypic variation. Our results are instrumental for our understanding of this widely used survival strategy in unicellular pathogens.


Chromosomal Proteins, Non-Histone/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Virulence Factors/genetics , Animals , Cell Nucleus/metabolism , Centromere/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes , Gene Silencing , Genome, Protozoan , Multigene Family , Oligonucleotide Array Sequence Analysis , Phenotype , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Reproducibility of Results , Virulence Factors/metabolism
11.
J Clin Microbiol ; 41(7): 3147-53, 2003 Jul.
Article En | MEDLINE | ID: mdl-12843055

We recently developed a new PCR-restriction fragment length polymorphism (RFLP)-based assay using the miniexon sequence from the genus Leishmania. Here we report the application of this new genotyping method to naturally infected clinical samples for the differentiation of New and Old World Leishmania species. Of the newly developed assay and four currently applied diagnostic tests (i.e., in vitro cultivation, serology, and two other molecular assays using either the small subunit-internal transcribed spacer sequence or a repetitive genomic sequence), the miniexon assay showed the highest sensitivity, 89.7%, compared to 70.6, 57.1, 51.7, and 79.3%, respectively. Species differentiation was robust and reliable compared with that by two other Leishmania genotyping techniques. The assay provides a valuable tool for the identification of Leishmania directly from clinical samples and enables determination of the infecting species by a facile technique with high discrimination power. Since Leishmania causes a broad spectrum of diseases distinguished by different parasite and host factors, detection and characterization of the infecting species is crucial for the confirmation of a diagnosis as well as the establishment of the clinical prognosis and the initiation of an adequate therapeutic approach. The miniexon PCR-RFLP assay will facilitate such determination and might improve diagnosis and treatment of leishmaniasis.


Leishmania/classification , Leishmania/genetics , Leishmaniasis/parasitology , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Animals , DNA, Ribosomal Spacer/genetics , Exons/genetics , Genes, rRNA , Genotype , Humans , Leishmania/growth & development , Sequence Analysis, DNA
12.
Diagn Microbiol Infect Dis ; 46(2): 115-24, 2003 Jun.
Article En | MEDLINE | ID: mdl-12812715

We have designed a new genotyping scheme for molecular diagnosis of the different Leishmania species pathogenic to humans. This scheme is based on PCR amplified sequences from the gene for the spliced leader RNA (mini-exon). This target was selected because it is present as tandem repeats (100 to 200 copies) in the genus Leishmania and other kinetoplastida, but is absent from the mammalian hosts and the sandfly vectors. The exon is highly conserved, whereas the intron and non-transcribed spacer region vary in size and sequence among different species. Thus, it was possible to amplify DNA from both Old and New World pathogenic Leishmania complexes using a single pair of primers deriving from the conserved region of the mini-exon tandem repeat. Species identification was performed by digesting mini-exon PCR products with one or two different restriction enzymes. Restriction fragment length polymorphism (RFLP) generated species-specific patterns of bands visualized in agarose gels, which allowed to differentiate each species unequivocally.


Leishmania/classification , Leishmaniasis, Cutaneous/diagnosis , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Animals , Base Sequence , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Humans , Leishmania/genetics , Leishmaniasis, Cutaneous/genetics , Molecular Sequence Data , Sampling Studies , Sensitivity and Specificity , Species Specificity
...