Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 64(24): 245012, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31766033

RESUMEN

Metal artifact reduction (MAR) algorithms reduce the errors caused by metal implants in x-ray computed tomography (CT) images and are an important part of error management in radiotherapy. A promising MAR approach is to leverage the information in magnetic resonance (MR) images that can be acquired for organ or tumor delineation. This is however complicated by the ambiguous relationship between CT values and conventional-sequence MR intensities as well as potential co-registration issues. In order to address these issues, this paper proposes a self-tuning Bayesian model for MR-based MAR that combines knowledge of the MR image intensities in local spatial neighborhoods with the information in an initial, corrupted CT reconstructed using filtered back projection. We demonstrate the potential of the resulting model in three widely-used MAR scenarios: image inpainting, sinogram inpainting and model-based iterative reconstruction. Compared to conventional alternatives in a retrospective study on nine head-and-neck patients with CT and T1-weighted MR scans, we find improvements in terms of image quality and quantitative CT value accuracy within each scenario. We conclude that the proposed model provides a versatile way to use the anatomical information in a co-acquired MR scan to boost the performance of MAR algorithms.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética/métodos , Prótesis e Implantes/efectos adversos , Tomografía Computarizada por Rayos X/métodos , Teorema de Bayes , Humanos , Imagen por Resonancia Magnética/normas , Metales/efectos adversos , Metales/efectos de la radiación , Tomografía Computarizada por Rayos X/normas
2.
Med Phys ; 46(10): 4314-4323, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31332792

RESUMEN

PURPOSE: We investigated the impact on computed tomography (CT) image quality and photon, electron, and proton head-and-neck (H&N) radiotherapy (RT) dose calculations of three CT metal artifact reduction (MAR) approaches: A CT-based algorithm (oMAR Philips Healthcare), manual water override, and our recently presented, Magnetic Resonance (MR)-based kerMAR algorithm. We considered the following three hypotheses: I: Manual water override improves MAR over the CT- and MR-based alternatives; II: The automatic algorithms (oMAR and kerMAR) improve MAR over the uncorrected CT; III: kerMAR improves MAR over oMAR. METHODS: We included a veal shank phantom with/without six metal inserts and nine H&N RT patients with dental implants. We quantified the MAR capabilities by the reduction of outliers in the CT value distribution in regions of interest, and the change in particle range and photon depth at maximum dose. RESULTS: Water override provided apparent image improvements in the soft tissue region but insignificantly or negatively influenced the dose calculations. We however found significant improvements in image quality and particle range impact, compared to the uncorrected CT, when using oMAR and kerMAR. kerMAR in turn provided superior improvements in terms of high intensity streak suppression compared to oMAR, again with associated impacts on the particle range estimates. CONCLUSION: We found no benefits of the water override compared to the rest, and tentatively reject hypothesis I. We however found improvements in the automatic algorithms, and thus support for hypothesis II, and found the MR-based kerMAR to improve upon oMAR, supporting hypothesis III.


Asunto(s)
Artefactos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Imagen por Resonancia Magnética , Metales , Tomografía Computarizada por Rayos X , Electrones/uso terapéutico , Humanos , Fotones/uso terapéutico , Terapia de Protones , Estudios Retrospectivos
3.
Sci Rep ; 8(1): 2930, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440724

RESUMEN

Molecular diffusion measured with diffusion weighted MRI (DWI) offers a probe for tissue microstructure. However, inferring microstructural properties from conventional DWI data is a complex inverse problem and has to account for heterogeneity in sizes, shapes and orientations of the tissue compartments contained within an imaging voxel. Alternative experimental means for disentangling the signal signatures of such features could provide a stronger link between the data and its interpretation. Double diffusion encoding (DDE) offers the possibility to factor out variation in compartment shapes from orientational dispersion of anisotropic domains by measuring the correlation between diffusivity in multiple directions. Time dependence of the diffusion is another effect reflecting the dimensions and distributions of barriers. In this paper we extend on DDE with a modified version of the oscillating gradient spin echo (OGSE) experiment, giving a basic contrast mechanism closely linked to both the temporal diffusion spectrum and the compartment anisotropy. We demonstrate our new method on post mortem brain tissue and show that we retrieve the correct temporal diffusion tensor spectrum in synthetic data from Monte Carlo simulations of random walks in a range of disordered geometries of different sizes and shapes.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Animales , Anisotropía , Encéfalo/diagnóstico por imagen , Chlorocebus aethiops , Método de Montecarlo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA